Lippia graveolens y su actividad contra bacterias asociadas a mastitis bovina: Revisión bibliográfica
Palabras clave:
Lippia graveolens, metabolitos secundarios, actividad antibacteriana, mastitisResumen
La mastitis bovina es una enfermedad infectocontagiosa de la glándula mamaria causada por la invasión de patógenos. La etiología bacteriana de esta enfermedad es una de las más importantes y el tratamiento de estas infecciones actualmente es más complejo por la resistencia que han generado las bacterias a los antimicrobianos convencionales. El objetivo de la presente investigación fue realizar una revisión bibliográfica de Lippia graveolens y su actividad contra bacterias asociadas a mastitis bovina. Se consultaron los reportes científicos de composición fitoquímica del orégano silvestre (L. graveolens) y la actividad antibacteriana contra bacterias asociadas a mastitis bovina. Los metabolitos identificados en L. graveolens con mayor reporte de actividad antibacteriana fueron naringenina, quercetina, luteolina así como los terpenos timol y carvacrol. L. graveolens contiene metabolitos secundarios con reportes de actividad antibacteriana por lo que podría ser una alternativa de tratamiento contra bacterias asociadas a mastitis bovina.
http://dx.doi.org/10.21929/abavet2025.2
e2024-34
Citas
ARIAS J, Muñoz F, Mejía J, Kumar A, Villa AL, Martínez JR, Stashenko EE. 2023. Simultaneous extraction with two phases (modified supercritical CO2 and CO2-expanded liquid) to enhance sustainable extraction/isolation of pinocembrin from Lippia origanoides (Verbenaceae). Advances in Sample Preparation. 100059(6):1-12. ISSN: 2772-5820. https://doi.org/10.1016/j.sampre.2023.100059
BAUTISTA HI, Aguilar CN, Martínez AGC, Torres LC, Ilina A, Flores GAC, Chávez GML. 2021. Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules. 26(17):1-12. ISSN: 1420-3049.
https://doi.org/10.3390/molecules26175156
BERNAL MMDJ, Carrasco PMDC, Heredia JB, Bastidas BPDJ, Gutiérrez GEP, León FJ, Angulo EMÁ. 2023. Green extracts and UPLC-TQS-MS/MS profiling of flavonoids from Mexican Oregano (Lippia graveolens) using natural deep eutectic solvents/ultrasound-assisted and supercritical fluids. Plants.12(8):1-12. ISSN: 2223-7747.
https://doi.org/10.3390/plants12081692
BERNAL MMDJ, Gutiérrez GEP, Contreras AL, Muy RMD, López MLX, Heredia JB. 2022. Spray-dried microencapsulation of oregano (Lippia graveolens) polyphenols with maltodextrin enhances their stability during in vitro digestion. Journal of Chemistry. 2022 (141):1-10. ISSN:1916-9698. https://doi.org/10.1155/2022/8740141
BUENO DAY, Cervantes MJ, Obledo VEN. 2014. Composition of essential oil from Lippia graveolens. Relationship between spectral light quality and thymol and carvacrol content. Journal of essential oil research. 26(3):153-160. ISSN: 2163-8152 https://doi.org/10.1080/10412905.2013.840808
CALAMACO ZG, Montfort GRC, Marszalek JE, González GV. 2023. Revisión sobre el orégano mexicano Lippia graveolens HBK.(Sinonimia Lippia berlandieri Schauer) y su aceite esencial. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 8(1):861-871. ISSN: 2448-7503. https://doi.org/10.29105/idcyta.v8i1.109
CALVO ILM, Parra TV, Acosta AV, Escalante EF, Díaz VL, Dzib GR, Peña RLM. 2014. Phytochemical Diversity of the Essential Oils of Mexican Oregano (Lippia graveolens Kunth) Populations along an Edapho‐Climatic Gradient. Chemistry & biodiversity. 11(7):1010-1021. ISSN: 1612-1872.
https://doi.org/10.1002/cbdv.201300389
CASTELLANOS HOA, Rodríguez SMD, Acevedo HGJ, Rayn, CA, Rodríguez SA. 2020. Evaluación antimicrobiana del aceite esencial de Lippia graveolens como inhibidor de crecimiento de Salmonella sp, E. coli y Enterococcus sp. e-CUCBA. 2020 (14):1-6. ISSN: 2448-5225. https://doi.org/10.32870/e-cucba.v0i14.155
CASTILLO HGA, Espinosa ME, Haro GJN, García FJA, Andrews HE, Velázquez MM. 2023. Impact of fractional distillation on physicochemical and biological properties of oregano essential oil of Lippia graveolens HBK grown wild in Mexico. Journal of Essential Oil Bearing Plants. 26(6):1515-1525. ISSN: 0972-060X.
https://doi.org/10.1080/0972060X.2023.2295418
CHIZZOLA R. 2013. Regular monoterpenes and sesquiterpenes (essential oils). Natural products. 2023(10):973-978. ISSN: 1520-6025.
https://doi.org/10.1007/978-3-642-22144-6130
CORTÉS CMDC, Flores MH, Orozco AI, León CC, Suárez JA, Estarrón EM, López MI. 2021. Identification and quantification of phenolic compounds from Mexican oregano (Lippia graveolens HBK) hydroethanolic extracts and evaluation of its antioxidant capacity. Molecules. 26(3-702):1-18. ISSN: 1420-3049.
https://doi.org/10.3390/molecules26030702
CUI H, Zhang C, Li C, Lin L. 2019. Antibacterial mechanism of oregano essential oil. Industrial Crops and Products. 139(111498):1-17. ISSN: 0926-6690.
https://doi.org/10.1016/j.indcrop.2019.111498
DAL POZZO M, Santurio DF, Rossatto L, Vargas AC, Alves SH, Loreto ES, Viegas J. 2011. Atividade de óleos essenciais de plantas condimentares frente Staphylococcus spp. isolados de mastite bovina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 63(5):1229-1232. ISSN: 1678-4162. https://doi.org/10.1590/S0102-09352011000500026
DI PASQUA R, Mamone G, Ferranti P, Ercolini D, Mauriello G. 2010. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 10(5):1040-1049. ISSN: 1876-7737.
https://doi.org/10.1002/pmic.200900568
Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. 2015. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. Journal of animal science and biotechnology. 6(58):1-12. ISSN: 2049-1891. https://doi.org/10.1186/s40104-015-0055-7
DUDA MA, Kozłowska J, Krzyżek P, Anioł M, Seniuk A, Jermakow K, Dworniczek E. 2020. Antimicrobial O-alkyl derivatives of naringenin and their oximes against multidrug-resistant bacteria. Molecules. 25(16-3642):1-15. ISSN: 1420-3049.
https://doi.org/10.3390/molecules25163642
ERAZO GMJ, Arroyo BFA, Arroyo BDA, Castro GMR, Santacruz TSG, Armas VADC. 2017. Efecto antimicrobiano del cinamaldehído, timol, eugenol y quitosano sobre cepas de Streptococcus mutans. Revista Cubana de Estomatología. 54(4):1-9. ISSN: 1561297X. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S003475072017000400005&lng=es&tlng=es
GALARZA GMI, Yarzábal RLA. 2021. Staphylococcus aureus resistentes à meticilina em animais de fazenda em américa do Sul: uma revisão sistemática. Vive Revista de Salud. 4(11):246-265. ISSN:2664-3243 https://doi.org/10.33996/revistavive.v4i11.99
GALLEGOS FPI, Bañuelos VR, Delgadillo RL, Meza LC, Echavarría CF. 2019. Actividad antibacteriana de cinco compuestos terpenoides: carvacrol, limoneno, linalool, α-terpineno y timol. Tropical and Subtropical Agroecosystems. 22(2):241-248. ISSN:1870-0462. http://dx.doi.org/10.56369/tsaes.2838
GALLEGOS FPI, Delgadillo RL, Bañuelos VR, Echavarría CF, Valladares CB, Meza LC. 2022. Inhibition of bacterial mobility by terpenoid compounds and plant essential oils. Tropical and Subtropical Agroecosystems. 25(1):1-10. ISSN:1870-0462. http://dx.doi.org/10.56369/tsaes.3914
GARCIA CM, Picos CLA, Gutiérrez GEP, Angulo EMA, Licea CA, Heredia JB. 2022. Loading and release of phenolic compounds present in Mexican oregano (Lippia graveolens) in different chitosan bio-polymeric cationic matrixes. Polymers. 4(17):3609. ISSN: 2073-4360. https://doi.org/10.3390/polym14173609
GARCÍA PJR; Marroquín DC; Pérez GMI. 2019. Inclusión de extracto de Lippia graveolens (Kunth) en la alimentación de Oreochromis niloticus (Linnaeus, 1758) para la prevención de estreptococosis por Streptococcus agalactiae. AquaTIC. 1(54):15-24. ISSN:1578-4541. https://www.redalyc.org/journal/494/49464451002/html/
GONZÁLEZ TME, Hernández SLY, Muñoz OV, Dorazco GA, Guevara FP, Aguirre HE. 2017. Pharmacological evaluation of the anxiolytic-like effects of Lippia graveolens and bioactive compounds. Pharmaceutical biology. ISSN: 1744-5116. 55(1):1569-1576. https://doi.org/10.1080/13880209.2017.1310908
MAR, Escobedo BC. 2022. In vitro evaluation of the antimicrobial activity of two types of oregano (Lippia berlandieri) essential oils against bacteria from shrimp ponds. Revista bio ciencias. 9(2022):1-15. ISSN: 2007-3380.
https://doi.org/10.15741/revbio.09.e1344
GUO Y, Huang C, Su H, Zhang Z, Chen M, Wang R, Liu, M. 2022. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes. Veterinary Research. 53(2022):1-11. ISSN: 1297-9716.
https://doi.org/10.1186/s13567-021-01021-w
GUPTA R, Kumar S, Khurana R. 2020. Essential oils and mastitis in dairy animals: a review. Haryana Veterinarian. 2020(59):1-9. ISSN: 0033-4359.
https://www.researchgate.net/publication/340004579
HERNANDEZ T, Canales M, AVILA JG, GARCÍA AM, Meraz S, Caballero J, Rafael, LIRA. 2009. Composition and antibacterial activity of essential oil of Lippia graveolens HBK (Verbenaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 8(4):295-300. ISSN: 0717-7917.
https://www.redalyc.org/pdf/856/85611265010.pdf
HOODA H, Singh P, Bajpai S. 2020. Effect of quercitin impregnated silver nanoparticle on growth of some clinical pathogens. Materials Today: Proceedings. 2020(31):625-630. ISSN: 2214-7853. https://doi.org/10.1016/j.matpr.2020.03.530
KE JY, Banh T, Hsiao YH, Cole RM, Straka SR, Yee LD, Belury MA. 2017. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Molecular nutrition & food research. 61(9): 1600934. ISSN: 1613-4133. https://doi.org/10.1002/mnfr.201600934
KOVAČEVIĆ Z, Samardžija M, Horvat O, Tomanić D, Radinović M, Bijelić K, Kladar N. 2022. Is there a relationship between antimicrobial use and antibiotic resistance of the most common mastitis pathogens in dairy cows?. Antibiotics. 12(3):1-15. ISSN: 2079-6382. https://doi.org/10.3390/antibiotics12010003
KOZŁOWSKA J, Grela E, Baczyńska D, Grabowiecka A, Anioł M. 2019. Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity. Molecules. 24(4-679):1-15. ISSN: 1420-3049.
https://doi.org/10.3390/molecules24040679
LEE JH, Kim YG, Lee J. 2017. Carvacrol‐rich oregano oil and thymol‐rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. Journal of applied microbiology. 123(6):1420-1428. ISSN: 1364-5072.
https://doi.org/10.1111/jam.13602
LEE JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J. 2013. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 29(5):491-499. ISSN: 1029-2454. https://doi.org/10.1080/08927014.2013.788692
LEYVA LN, Nair V, Bang WY, Cisneros ZL, Heredia JB. 2016. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. Journal of Ethnopharmacology. 2016(187):302-312. ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2016.04.051
LI X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. 2023. Alternatives to antibiotics for treatment of mastitis in dairy cows. Frontiers in Veterinary Science. 10(1160350):1-13. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2023.1160350
LIN LZ, Mukhopadhyay S, Robbins RJ, Harnly JM. 2007. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of food composition and analysis. 20(5):361-369. ISSN: 0889-1575. https://doi.org/10.1016/j.jfca.2006.09.005
LLAMAS TI, Grijalva AR, Porter BL, Calvo ILM. 2022. Impact of the in situ-ex situ management of Mexican oregano Lippia origanoides Kunth in northwestern Yucatan.Botanical Sciences. 100(3):610-630. ISSN: 2007-4476.
https://doi.org/10.17129/botsci.2994
MARTÍNEZ NDA, Parra TV, Ferrer OMM, Calvo ILM. 2014. Genetic diversity and genetic structure in wild populations of Mexican oregano (Lippia graveolens HBK) and its relationship with the chemical composition of the essential oil. Plant systematics and evolution. 300(2014):535-547. ISSN: 1615-6110. https://doi.org/10.1007/s00606-013-0902-y
MEMAR MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. 2017. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews and Research in Medical Microbiology. 28(2):63-68. ISSN: 2770-3150.
https://doi.org/10.1097/MRM.0000000000000100
MORALES UAL, Rivero PN, Valladares CB, Velázquez OV, Delgadillo RL, Zaragoza BA. 2023. Bovine mastitis, a worldwide impact disease: prevalence, antimicrobial resistance, and viable alternative approaches. Veterinary and Animal Science. 21(100306):1-14. ISSN: 2451-943X. https://doi.org/10.1016/j.vas.2023.100306
NONATO CDFA, Camilo CJ, Leite DOD, da Nobrega MGLA, Ribeiro FJ, de Menezes IRA, da Costa JGM. 2022. Comparative analysis of chemical profiles and antioxidant activities of essential oils obtained from species of Lippia L. by chemometrics. Food Chemistry. 2022(384):1-8. ISSN: 0308-8146.
https://doi.org/10.1016/j.foodchem.2022.132614
OCAMPO VRV, Malda BGX, Suárez RG. 2009. Biología reproductiva del orégano mexicano (Lippia graveolens Kunth) en tres condiciones de aprovechamiento. Agrociencia. 43(5):475-482. ISSN: 1405-3195.
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140531952009000500003&lng=es&nrm=iso
PASCU C, Herman V, Iancu I, Costinar L. 2022. Etiology of mastitis and antimicrobial resistance in dairy cattle farms in the western part of Romania. Antibiotics. 11(1):57. ISSN: 2079-6382. https://doi.org/10.3390/antibiotics11010057
PICOS SMA, Gutiérrez GEP, Valdez TB, Angulo EMA, López MLX, Delgado VF, Heredia JB. 2021. Supercritical CO2 extraction of oregano (Lippia graveolens) phenolic compounds with antioxidant, α-amylase and α-glucosidase inhibitory capacity. Journal of Food Measurement and Characterization. 15(4):3480-3490. ISSN: 2193-4134. https://doi.org/10.1007/s11694-021-00928-4
PINHEIRO LG, dos Santos FRO, Rodrigues THS, Pinto VDPT, Barbosa FCB. 2022. Inhibitory and bactericidal activities of Lippia origanoides essential oil against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa multidrug resistant. Research, Society and Development. 11(9):1-12. ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i9.31478
PLAPER AGM, Hafner I, Oblak M, Šolmajer T, Jerala R. 2003. Characterization of quercetin binding site on DNA gyrase. Biochemical and biophysical research communications. 306(2):530-536. ISSN: 0006-291X. https://doi.org/10.1016/S0006-291X(03)01006-4
QIAN WD, Fu YT, Liu M, Zhang JN, Wang WJ, Li JY, Li YD. 2020. Mechanisms of Action of Luteolin Against Single-and Dual-Species of Escherichia coli and Enterobacter cloacae and Its Antibiofilm Activities. Applied Biochemistry and Biotechnology. 193(5):1397-1414. ISSN: 1559-0291. https://doi.org/10.1007/s12010-020-03330-w
RANI S, Verma S., Singh H, Ram C. 2022. Antibacterial activity and mechanism of essential oils in combination with medium‐chain fatty acids against predominant bovine mastitis pathogens. Letters in Applied Microbiology. 74(6):959-969. ISSN: 1472-765X. https://doi.org/10.1111/lam.13675
RASTRELLI L, Caceres A, Morales C., De Simone F, Aquino R. 1998. Iridoids from Lippia graveolens. Phytochemistry. 49(6):1829-1832. ISSN: 1873-3700.
https://doi.org/10.1016/S0031-9422(98)00196-4
REYES JF, Munguía PR, Cid PTS, Hernández CP, Ochoa VCE, Avila SR. 2020. Inhibitory Effect of Mexican Oregano (Lippia berlandieri Schauer) Essential Oil on Pseudomonas aeruginosa and Salmonella Thyphimurium Biofilm Formation. Frontiers in Sustainable Food Systems. 4(36):1-6. ISSN: 2571-581X.
https://doi.org/10.3389/fsufs.2020.00036
SHAPIRA R, Mimran E. 2007. Isolation and characterization of Escherichia coli mutants exhibiting altered response to thymol. Microbial Drug Resistance. 13(3):157-165. ISSN: 1931-8448. https://doi.org/10.1089/mdr.2007.731
SHARUN K, Dhama K, Tiwari R, Gugjoo MB, Iqbal YM, Patel SK, Chaicumpa W. 2021. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly. 41(1):107-136. ISSN:1875-5941. https://doi.org/10.1080/01652176.2021.1882713
SOTO ALC, Sacramento RJC, Ruiz MCA, Lope NMC, Rocha UJA. 2019. Extraction yield and kinetic study of Lippia graveolens with supercritical CO2. The Journal of Supercritical Fluids. 2019(145):205-210. ISSN: 0896-8446.
https://doi.org/10.1016/j.supflu.2018.12.018
SUAREZ BJM, Suarez MC, Calvo MA, Parada F, Cortés F, Tobón F, Toro S. 2024. Screening of essential oils against oxacillin-resistant Staphylococcus aureus strains isolated from bovine mastitis. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 23(3):401-409. ISSN: 0717-7917.
https://doi.org/10.37360/blacpma.24.23.3.28
TAPIA RMR, Hernandez MA, Gonzalez AGA, a TMA, Martins CM, Ayala ZJF. 2017. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control. 2017(75):255-261. ISSN: 0956-7135. https://doi.org/10.1016/j.foodcont.2016.12.014
TORRES SLM, Pérez CA, Torregroza EA, Vitola RD. 2022. Chemical comparison of the essential oils of Lippia Origanoides in two agroclimatic zones of the Colombian Caribbean coast. Dyna. 89(220):172-177. ISSN: 0012-7353.
https://doi.org/10.15446/dyna.v89n220.95739
ULTEE A, Kets EP, Alberda M, Hoekstra FA, Smid EJ. 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of microbiology. 174(4):233-238. ISSN: 1432-072X. https://doi.org/10.1007/s002030000199
VERNIN G, Lageot C, Gaydou EM, Parkanyi C. 2001. Analysis of the essential oil of Lippia graveolens HBK from El Salvador. Flavour and fragrance journal. 16(3):219-226. ISSN: 1099-1026. https://doi.org/10.1002/ffj.984
WANG LH, Zeng XA, Wang MS, Brennan CS, Gong D. 2018. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Biochimica et Biophysica. Acta (BBA)-Biomembranes. 1860(2):481-490. ISSN: 1879-2642. https://doi.org/10.1016/j.bbamem.217.11.007
WANG Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Yan Y. 2021. Phage vB_PaeS-PAJD-1 rescues murine mastitis infected with multidrug-resistant Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology. 689770(11):1-13. ISSN: 2235-2988 https://doi.org/10.3389/fcimb.2021.689770
WU C, Xu Q, Chen X, Liu J. 2019. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. International Journal of Nanomedicine. 2019(14):7515-7531. ISSN: 1178-2013. https://doi.org/10.2147/IJN.S214585
