Lippia graveolens and its activity against bacteria associated with bovine mastitis: Literature review

Authors

Keywords:

Lippia graveolens, secondary metabolites, antibacterial activity, mastitis

Abstract

Bovine mastitis is an infectious disease of the mammary gland caused by the invasion of pathogens, among them the bacterial etiology is one of the most important and the treatment of these infections has currently been complicated by the resistance generated by Gram positive bacteria and Gram negative to conventional antimicrobials. The objective of this research was to carry out a bibliographic review of Lippia graveolens and its activity against bacteria associated with bovine mastitis. Scientific reports on the phytochemical composition of wild oregano (L. graveolens) and the antibacterial activity against bacteria associated with bovine mastitis were consulted. The metabolites identified in L. graveolens with the highest reported antibacterial activity were naringenin, quercetin, luteolin as well as the terpenes thymol and carvacrol. L. graveolens contains secondary metabolites with reports of antibacterial activity, so it could be an alternative treatment against bacteria associated with bovine mastitis.

http://dx.doi.org/10.21929/abavet2025.2

e2024-34

https://www.youtube.com/watch?v=3ZIZSjJTTc4

References

ARIAS J, Muñoz F, Mejía J, Kumar A, Villa AL, Martínez JR, Stashenko EE. 2023. Simultaneous extraction with two phases (modified supercritical CO2 and CO2-expanded liquid) to enhance sustainable extraction/isolation of pinocembrin from Lippia origanoides (Verbenaceae). Advances in Sample Preparation. 100059(6):1-12. ISSN: 2772-5820. https://doi.org/10.1016/j.sampre.2023.100059

BAUTISTA HI, Aguilar CN, Martínez AGC, Torres LC, Ilina A, Flores GAC, Chávez GML. 2021. Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules. 26(17):1-12. ISSN: 1420-3049.

https://doi.org/10.3390/molecules26175156

BERNAL MMDJ, Carrasco PMDC, Heredia JB, Bastidas BPDJ, Gutiérrez GEP, León FJ, Angulo EMÁ. 2023. Green extracts and UPLC-TQS-MS/MS profiling of flavonoids from Mexican Oregano (Lippia graveolens) using natural deep eutectic solvents/ultrasound-assisted and supercritical fluids. Plants.12(8):1-12. ISSN: 2223-7747.

https://doi.org/10.3390/plants12081692

BERNAL MMDJ, Gutiérrez GEP, Contreras AL, Muy RMD, López MLX, Heredia JB. 2022. Spray-dried microencapsulation of oregano (Lippia graveolens) polyphenols with maltodextrin enhances their stability during in vitro digestion. Journal of Chemistry. 2022 (141):1-10. ISSN:1916-9698. https://doi.org/10.1155/2022/8740141

BUENO DAY, Cervantes MJ, Obledo VEN. 2014. Composition of essential oil from Lippia graveolens. Relationship between spectral light quality and thymol and carvacrol content. Journal of essential oil research. 26(3):153-160. ISSN: 2163-8152 https://doi.org/10.1080/10412905.2013.840808

CALAMACO ZG, Montfort GRC, Marszalek JE, González GV. 2023. Revisión sobre el orégano mexicano Lippia graveolens HBK.(Sinonimia Lippia berlandieri Schauer) y su aceite esencial. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 8(1):861-871. ISSN: 2448-7503. https://doi.org/10.29105/idcyta.v8i1.109

CALVO ILM, Parra TV, Acosta AV, Escalante EF, Díaz VL, Dzib GR, Peña RLM. 2014. Phytochemical Diversity of the Essential Oils of Mexican Oregano (Lippia graveolens Kunth) Populations along an Edapho‐Climatic Gradient. Chemistry & biodiversity. 11(7):1010-1021. ISSN: 1612-1872.

https://doi.org/10.1002/cbdv.201300389

CASTELLANOS HOA, Rodríguez SMD, Acevedo HGJ, Rayn, CA, Rodríguez SA. 2020. Evaluación antimicrobiana del aceite esencial de Lippia graveolens como inhibidor de crecimiento de Salmonella sp, E. coli y Enterococcus sp. e-CUCBA. 2020 (14):1-6. ISSN: 2448-5225. https://doi.org/10.32870/e-cucba.v0i14.155

CASTILLO HGA, Espinosa ME, Haro GJN, García FJA, Andrews HE, Velázquez MM. 2023. Impact of fractional distillation on physicochemical and biological properties of oregano essential oil of Lippia graveolens HBK grown wild in Mexico. Journal of Essential Oil Bearing Plants. 26(6):1515-1525. ISSN: 0972-060X.

https://doi.org/10.1080/0972060X.2023.2295418

CHIZZOLA R. 2013. Regular monoterpenes and sesquiterpenes (essential oils). Natural products. 2023(10):973-978. ISSN: 1520-6025.

https://doi.org/10.1007/978-3-642-22144-6130

CORTÉS CMDC, Flores MH, Orozco AI, León CC, Suárez JA, Estarrón EM, López MI. 2021. Identification and quantification of phenolic compounds from Mexican oregano (Lippia graveolens HBK) hydroethanolic extracts and evaluation of its antioxidant capacity. Molecules. 26(3-702):1-18. ISSN: 1420-3049.

https://doi.org/10.3390/molecules26030702

CUI H, Zhang C, Li C, Lin L. 2019. Antibacterial mechanism of oregano essential oil. Industrial Crops and Products. 139(111498):1-17. ISSN: 0926-6690.

https://doi.org/10.1016/j.indcrop.2019.111498

DAL POZZO M, Santurio DF, Rossatto L, Vargas AC, Alves SH, Loreto ES, Viegas J. 2011. Atividade de óleos essenciais de plantas condimentares frente Staphylococcus spp. isolados de mastite bovina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 63(5):1229-1232. ISSN: 1678-4162. https://doi.org/10.1590/S0102-09352011000500026

DI PASQUA R, Mamone G, Ferranti P, Ercolini D, Mauriello G. 2010. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 10(5):1040-1049. ISSN: 1876-7737.

https://doi.org/10.1002/pmic.200900568

Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. 2015. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. Journal of animal science and biotechnology. 6(58):1-12. ISSN: 2049-1891. https://doi.org/10.1186/s40104-015-0055-7

DUDA MA, Kozłowska J, Krzyżek P, Anioł M, Seniuk A, Jermakow K, Dworniczek E. 2020. Antimicrobial O-alkyl derivatives of naringenin and their oximes against multidrug-resistant bacteria. Molecules. 25(16-3642):1-15. ISSN: 1420-3049.

https://doi.org/10.3390/molecules25163642

ERAZO GMJ, Arroyo BFA, Arroyo BDA, Castro GMR, Santacruz TSG, Armas VADC. 2017. Efecto antimicrobiano del cinamaldehído, timol, eugenol y quitosano sobre cepas de Streptococcus mutans. Revista Cubana de Estomatología. 54(4):1-9. ISSN: 1561297X. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S003475072017000400005&lng=es&tlng=es

GALARZA GMI, Yarzábal RLA. 2021. Staphylococcus aureus resistentes à meticilina em animais de fazenda em américa do Sul: uma revisão sistemática. Vive Revista de Salud. 4(11):246-265. ISSN:2664-3243 https://doi.org/10.33996/revistavive.v4i11.99

GALLEGOS FPI, Bañuelos VR, Delgadillo RL, Meza LC, Echavarría CF. 2019. Actividad antibacteriana de cinco compuestos terpenoides: carvacrol, limoneno, linalool, α-terpineno y timol. Tropical and Subtropical Agroecosystems. 22(2):241-248. ISSN:1870-0462. http://dx.doi.org/10.56369/tsaes.2838

GALLEGOS FPI, Delgadillo RL, Bañuelos VR, Echavarría CF, Valladares CB, Meza LC. 2022. Inhibition of bacterial mobility by terpenoid compounds and plant essential oils. Tropical and Subtropical Agroecosystems. 25(1):1-10. ISSN:1870-0462. http://dx.doi.org/10.56369/tsaes.3914

GARCIA CM, Picos CLA, Gutiérrez GEP, Angulo EMA, Licea CA, Heredia JB. 2022. Loading and release of phenolic compounds present in Mexican oregano (Lippia graveolens) in different chitosan bio-polymeric cationic matrixes. Polymers. 4(17):3609. ISSN: 2073-4360. https://doi.org/10.3390/polym14173609

GARCÍA PJR; Marroquín DC; Pérez GMI. 2019. Inclusión de extracto de Lippia graveolens (Kunth) en la alimentación de Oreochromis niloticus (Linnaeus, 1758) para la prevención de estreptococosis por Streptococcus agalactiae. AquaTIC. 1(54):15-24. ISSN:1578-4541. https://www.redalyc.org/journal/494/49464451002/html/

GONZÁLEZ TME, Hernández SLY, Muñoz OV, Dorazco GA, Guevara FP, Aguirre HE. 2017. Pharmacological evaluation of the anxiolytic-like effects of Lippia graveolens and bioactive compounds. Pharmaceutical biology. ISSN: 1744-5116. 55(1):1569-1576. https://doi.org/10.1080/13880209.2017.1310908

MAR, Escobedo BC. 2022. In vitro evaluation of the antimicrobial activity of two types of oregano (Lippia berlandieri) essential oils against bacteria from shrimp ponds. Revista bio ciencias. 9(2022):1-15. ISSN: 2007-3380.

https://doi.org/10.15741/revbio.09.e1344

GUO Y, Huang C, Su H, Zhang Z, Chen M, Wang R, Liu, M. 2022. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes. Veterinary Research. 53(2022):1-11. ISSN: 1297-9716.

https://doi.org/10.1186/s13567-021-01021-w

GUPTA R, Kumar S, Khurana R. 2020. Essential oils and mastitis in dairy animals: a review. Haryana Veterinarian. 2020(59):1-9. ISSN: 0033-4359.

https://www.researchgate.net/publication/340004579

HERNANDEZ T, Canales M, AVILA JG, GARCÍA AM, Meraz S, Caballero J, Rafael, LIRA. 2009. Composition and antibacterial activity of essential oil of Lippia graveolens HBK (Verbenaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 8(4):295-300. ISSN: 0717-7917.

https://www.redalyc.org/pdf/856/85611265010.pdf

HOODA H, Singh P, Bajpai S. 2020. Effect of quercitin impregnated silver nanoparticle on growth of some clinical pathogens. Materials Today: Proceedings. 2020(31):625-630. ISSN: 2214-7853. https://doi.org/10.1016/j.matpr.2020.03.530

KE JY, Banh T, Hsiao YH, Cole RM, Straka SR, Yee LD, Belury MA. 2017. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Molecular nutrition & food research. 61(9): 1600934. ISSN: 1613-4133. https://doi.org/10.1002/mnfr.201600934

KOVAČEVIĆ Z, Samardžija M, Horvat O, Tomanić D, Radinović M, Bijelić K, Kladar N. 2022. Is there a relationship between antimicrobial use and antibiotic resistance of the most common mastitis pathogens in dairy cows?. Antibiotics. 12(3):1-15. ISSN: 2079-6382. https://doi.org/10.3390/antibiotics12010003

KOZŁOWSKA J, Grela E, Baczyńska D, Grabowiecka A, Anioł M. 2019. Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity. Molecules. 24(4-679):1-15. ISSN: 1420-3049.

https://doi.org/10.3390/molecules24040679

LEE JH, Kim YG, Lee J. 2017. Carvacrol‐rich oregano oil and thymol‐rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. Journal of applied microbiology. 123(6):1420-1428. ISSN: 1364-5072.

https://doi.org/10.1111/jam.13602

LEE JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J. 2013. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 29(5):491-499. ISSN: 1029-2454. https://doi.org/10.1080/08927014.2013.788692

LEYVA LN, Nair V, Bang WY, Cisneros ZL, Heredia JB. 2016. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. Journal of Ethnopharmacology. 2016(187):302-312. ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2016.04.051

LI X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. 2023. Alternatives to antibiotics for treatment of mastitis in dairy cows. Frontiers in Veterinary Science. 10(1160350):1-13. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2023.1160350

LIN LZ, Mukhopadhyay S, Robbins RJ, Harnly JM. 2007. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of food composition and analysis. 20(5):361-369. ISSN: 0889-1575. https://doi.org/10.1016/j.jfca.2006.09.005

LLAMAS TI, Grijalva AR, Porter BL, Calvo ILM. 2022. Impact of the in situ-ex situ management of Mexican oregano Lippia origanoides Kunth in northwestern Yucatan.Botanical Sciences. 100(3):610-630. ISSN: 2007-4476.

https://doi.org/10.17129/botsci.2994

MARTÍNEZ NDA, Parra TV, Ferrer OMM, Calvo ILM. 2014. Genetic diversity and genetic structure in wild populations of Mexican oregano (Lippia graveolens HBK) and its relationship with the chemical composition of the essential oil. Plant systematics and evolution. 300(2014):535-547. ISSN: 1615-6110. https://doi.org/10.1007/s00606-013-0902-y

MEMAR MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. 2017. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews and Research in Medical Microbiology. 28(2):63-68. ISSN: 2770-3150.

https://doi.org/10.1097/MRM.0000000000000100

MORALES UAL, Rivero PN, Valladares CB, Velázquez OV, Delgadillo RL, Zaragoza BA. 2023. Bovine mastitis, a worldwide impact disease: prevalence, antimicrobial resistance, and viable alternative approaches. Veterinary and Animal Science. 21(100306):1-14. ISSN: 2451-943X. https://doi.org/10.1016/j.vas.2023.100306

NONATO CDFA, Camilo CJ, Leite DOD, da Nobrega MGLA, Ribeiro FJ, de Menezes IRA, da Costa JGM. 2022. Comparative analysis of chemical profiles and antioxidant activities of essential oils obtained from species of Lippia L. by chemometrics. Food Chemistry. 2022(384):1-8. ISSN: 0308-8146.

https://doi.org/10.1016/j.foodchem.2022.132614

OCAMPO VRV, Malda BGX, Suárez RG. 2009. Biología reproductiva del orégano mexicano (Lippia graveolens Kunth) en tres condiciones de aprovechamiento. Agrociencia. 43(5):475-482. ISSN: 1405-3195.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140531952009000500003&lng=es&nrm=iso

PASCU C, Herman V, Iancu I, Costinar L. 2022. Etiology of mastitis and antimicrobial resistance in dairy cattle farms in the western part of Romania. Antibiotics. 11(1):57. ISSN: 2079-6382. https://doi.org/10.3390/antibiotics11010057

PICOS SMA, Gutiérrez GEP, Valdez TB, Angulo EMA, López MLX, Delgado VF, Heredia JB. 2021. Supercritical CO2 extraction of oregano (Lippia graveolens) phenolic compounds with antioxidant, α-amylase and α-glucosidase inhibitory capacity. Journal of Food Measurement and Characterization. 15(4):3480-3490. ISSN: 2193-4134. https://doi.org/10.1007/s11694-021-00928-4

PINHEIRO LG, dos Santos FRO, Rodrigues THS, Pinto VDPT, Barbosa FCB. 2022. Inhibitory and bactericidal activities of Lippia origanoides essential oil against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa multidrug resistant. Research, Society and Development. 11(9):1-12. ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i9.31478

PLAPER AGM, Hafner I, Oblak M, Šolmajer T, Jerala R. 2003. Characterization of quercetin binding site on DNA gyrase. Biochemical and biophysical research communications. 306(2):530-536. ISSN: 0006-291X. https://doi.org/10.1016/S0006-291X(03)01006-4

QIAN WD, Fu YT, Liu M, Zhang JN, Wang WJ, Li JY, Li YD. 2020. Mechanisms of Action of Luteolin Against Single-and Dual-Species of Escherichia coli and Enterobacter cloacae and Its Antibiofilm Activities. Applied Biochemistry and Biotechnology. 193(5):1397-1414. ISSN: 1559-0291. https://doi.org/10.1007/s12010-020-03330-w

RANI S, Verma S., Singh H, Ram C. 2022. Antibacterial activity and mechanism of essential oils in combination with medium‐chain fatty acids against predominant bovine mastitis pathogens. Letters in Applied Microbiology. 74(6):959-969. ISSN: 1472-765X. https://doi.org/10.1111/lam.13675

RASTRELLI L, Caceres A, Morales C., De Simone F, Aquino R. 1998. Iridoids from Lippia graveolens. Phytochemistry. 49(6):1829-1832. ISSN: 1873-3700.

https://doi.org/10.1016/S0031-9422(98)00196-4

REYES JF, Munguía PR, Cid PTS, Hernández CP, Ochoa VCE, Avila SR. 2020. Inhibitory Effect of Mexican Oregano (Lippia berlandieri Schauer) Essential Oil on Pseudomonas aeruginosa and Salmonella Thyphimurium Biofilm Formation. Frontiers in Sustainable Food Systems. 4(36):1-6. ISSN: 2571-581X.

https://doi.org/10.3389/fsufs.2020.00036

SHAPIRA R, Mimran E. 2007. Isolation and characterization of Escherichia coli mutants exhibiting altered response to thymol. Microbial Drug Resistance. 13(3):157-165. ISSN: 1931-8448. https://doi.org/10.1089/mdr.2007.731

SHARUN K, Dhama K, Tiwari R, Gugjoo MB, Iqbal YM, Patel SK, Chaicumpa W. 2021. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly. 41(1):107-136. ISSN:1875-5941. https://doi.org/10.1080/01652176.2021.1882713

SOTO ALC, Sacramento RJC, Ruiz MCA, Lope NMC, Rocha UJA. 2019. Extraction yield and kinetic study of Lippia graveolens with supercritical CO2. The Journal of Supercritical Fluids. 2019(145):205-210. ISSN: 0896-8446.

https://doi.org/10.1016/j.supflu.2018.12.018

SUAREZ BJM, Suarez MC, Calvo MA, Parada F, Cortés F, Tobón F, Toro S. 2024. Screening of essential oils against oxacillin-resistant Staphylococcus aureus strains isolated from bovine mastitis. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 23(3):401-409. ISSN: 0717-7917.

https://doi.org/10.37360/blacpma.24.23.3.28

TAPIA RMR, Hernandez MA, Gonzalez AGA, a TMA, Martins CM, Ayala ZJF. 2017. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control. 2017(75):255-261. ISSN: 0956-7135. https://doi.org/10.1016/j.foodcont.2016.12.014

TORRES SLM, Pérez CA, Torregroza EA, Vitola RD. 2022. Chemical comparison of the essential oils of Lippia Origanoides in two agroclimatic zones of the Colombian Caribbean coast. Dyna. 89(220):172-177. ISSN: 0012-7353.

https://doi.org/10.15446/dyna.v89n220.95739

ULTEE A, Kets EP, Alberda M, Hoekstra FA, Smid EJ. 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of microbiology. 174(4):233-238. ISSN: 1432-072X. https://doi.org/10.1007/s002030000199

VERNIN G, Lageot C, Gaydou EM, Parkanyi C. 2001. Analysis of the essential oil of Lippia graveolens HBK from El Salvador. Flavour and fragrance journal. 16(3):219-226. ISSN: 1099-1026. https://doi.org/10.1002/ffj.984

WANG LH, Zeng XA, Wang MS, Brennan CS, Gong D. 2018. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Biochimica et Biophysica. Acta (BBA)-Biomembranes. 1860(2):481-490. ISSN: 1879-2642. https://doi.org/10.1016/j.bbamem.217.11.007

WANG Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Yan Y. 2021. Phage vB_PaeS-PAJD-1 rescues murine mastitis infected with multidrug-resistant Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology. 689770(11):1-13. ISSN: 2235-2988 https://doi.org/10.3389/fcimb.2021.689770

WU C, Xu Q, Chen X, Liu J. 2019. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. International Journal of Nanomedicine. 2019(14):7515-7531. ISSN: 1178-2013. https://doi.org/10.2147/IJN.S214585

Published

2025-02-10

Issue

Section

Literature reviews

Most read articles by the same author(s)