Impact of different additives on ruminal acidosis and fermentation of lams
Keywords:
ovine, feed lot, probiotics, symbiotics, prebioticsAbstract
The objective was to evaluate the ruminal fermentation and acidosis on finishing lambs supplemented with different additives. Four ruminal cannulated lambs were used. Treatments were 1) Control (Basal diet); 2) LEV (Basal diet + Saccharomyces cerevisiae); 3) ION (Basal diet + Sodic monensin); 4) ET (Basal diet + Experimental Treatment). Diet contained at least 14% de CP and 2.962 Mcal/kg de ME. Dry matter intake (DMI) was evaluated. In ruminal fluid samples, pH, ammonia concentration (NH3), and volatile fatty acids concentration (VFA) were evaluated. Data was analyzed in a 4 x 4 latin square design. Ruminal pH, VFA concentration and acetic:propionic ratio was not different (P>0.05) among treatments. Dry matter intake was similar (P>0.05) among treatments. Ruminal pH was different (P < 0.01) among hours. Interaction treatment x hour was different (P<0.05) for NH3 concentration, acetic, propionic, butyric acids, and total VFA´s concentrations. The use of a mixture of probiotics, prebiotics and symbiotic, did not improve ruminal fermentation of finishing hair lambs.
http://dx.doi.org/10.21929/abavet2023.109
e2023-109
References
ALVAREZ CM, Villalobos G, Domínguez J, Corral G, Alvarez, Castillo F. 2018. Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes. R. Bras. Zootec. 47:e20170121. https://doi.org/10.1590/rbz4720170121
ANELE UY, Engel CL, Swanson KC, Baines D. 2017. Effects of synbiotics on rumen fermentation. J. Anim. Sci. 95(4):300–301. https://doi.org/10.2527/asasann.2017.614
BALOYI J, Rambau M, Fushai F. 2018. Effect of Carbohydrate Additives on the Post-ruminal Dry Matter and Protein Digestibility of Napier Grass (Pennisetum purpureum) Silage. J. Anim. Sci. 96(3): 205. https://doi.org/10.1093/jas/sky404.445
BRODERICK GA, Kang JH. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63(1): 4–75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
BROWN MS, Nagaraja TG. 2009. Direct-fed microbials for growing and finishing cattle. Pp. 42-61. En: Proceedings of the Plains Nutrition Council. Spring Conference. Publication No. AREC 09-18, Texas AgriLife Research and Extension Center, Amarillo. USA. https://theplainsnutritioncouncil.com/web/wp-content/uploads/2019/10/2016-Plains-Nutrition-Council-proceeding_finalw-cover.pdf
BURNETT RH, Kegley EB, Moore JC, Powell JG, Rorie RW, Larson CK. 2016. Comparison of organic and inorganic trace minerals supplementation strategies for beef heifers. J. Anim. Sci. 94(1): 46–47. https://doi.org/10.2527/ssasas2015-094
CARMONA J, Bolívar D, Giraldo L. 2005. El gas metano en la producción ganadera y alternativas para medir sus emisiones y aminorar su impacto a nivel ambiental y productivo. Rev. Col. C. Pec. 18(1): 49-63.
https://www.redalyc.org/articulo.oa?id=295022952006
CASTILLO-RANGEL F, Villalobos G, Díaz DD, Gutiérrez JA. 2017. Effect of the dietary level of cull pinto beans (Phaseolus vulgaris) on ruminal fermentation, kinetics, and digestibility of hair lambs. Rev. Brasileira Zoot. 46(5): 405–412.
https://www.scielo.br/j/rbz/a/MGZnjS4hpRQpHsthzhPHtPq/?lang=en
CHIQUETTE J. 2009. Evaluation of the protective effect of probiotics fed to dairy cows during a subacute ruminal acidosis challenge. Anim. Feed Sci. Tech. 153(3–4): 278–291. https://www.sciencedirect.com/science/article/abs/pii/S0377840109002296
CHRISTOPHERSEN CT, Wright AG, Vercoe PE. 2008. In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J. Anim. Sci. 86:384–389.
https://doi.org/10.2527/jas.2007-0373
COMMUN L, Mialon MM, Martin C, Baumont R, Veissier I. (2009). Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. J. Anim Sci. 87(10): 3372–3379. https://doi.org/10.2527/jas.2009-1968
CULL CA, Renter DG, Bello NM, Ives SE, Babcock AH. 2015. Performance and carcass characteristics of commercial feedlot cattle from a study of vaccine and direct-fed microbial effects on Escherichia coli O157:H7 fecal shedding. J. Anim. Sci. 93:3144-3151. https://doi.org/10.2527/jas.2015-8924
DAVIDSON S, Hopkinns BA, Diaz DE, Bolt SM, Brownie C, Fellner V, Whitlow M. 2003. Effects of amounts and degradability of dietary protein on lactation, nitrogen utilization, and excretion in early lactation holstein cows. J. Dairy Sci. 86:1681–1689. https://www.journalofdairyscience.org/article/S0022-0302(03)73754-0/pdf
DEVANT M. 2015. Acidosis ruminal y timpanismo: que sabemos realmente? (II). XIII Congreso Internacional Anembe de Medicina Bovina, I: 56–63.
http://axonveterinaria.net/web_axoncomunicacion/criaysalud/37/cys_37_5663_Acidosis_Ruminal_Timpanismo_I.pdf%0Ahttp://axonveterinaria.net/web_axoncomunicacion/criaysalud/38/cys_38_Acidosis_Ruminal_y_Timpanismo.pdf. Accesado el 13 de junio de 2020
ELLERMAN TJ, Horton LM, Katulski SL, Van Bibber-Krueger CL, Aperce CC, Drouillard JS. 2017. Ruminal characteristics and feedlot performance of feedlot steers during accelerated step-up to high-concentrate diets using Lactipro Advance®. J. Anim. Sci. 95(4): 277–278. https://doi.org/10.2527/asasann.2017.567
FARGHALY MM, Hamdon HA. 2018. Effects of live yeast (saccharomyces cerevisiae) supplementation on nutrient digestibility, rumen fermentation and rumen microbial population count in sheep. Egyptian J. Anim. Prod. 55(1):51-56.
https://ejap.journals.ekb.eg/article_93255_2dad9ab5131ec40cbea3aa5e70e68c86.pdf
FERRELL CL, Freetly HC, Goetsch AL, Kreikemeier KK. 2001. The effect of dietary nitrogen and protein on feed intake, nutrient digestibility, and nitrogen flux across the portal-drained viscera and liver of sheep consuming high-concentrate diets ad libitum. J. Anim. Sci. 79(5):1322. https://doi.org/10.2527/2001.7951322x
GALYEAN TM. 2010. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. Texas Tech University. Lubbock. Texas. USA. Pp. 154-156.
https://www.depts.ttu.edu/agriculturalsciences/vetSciences/mgalyean/lab_man.pdf
GANG G, Chen S, Qiang L, Shuan-lin Z, Tao S, Cong W, Yong-Xin W, Qing-fang X, Wen-jie H. 2020. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integrative Agric. 19(3): 838–847.
https://doi.org/10.1016/S2095-3119(19)62707-3
GRANJA YT, Ribeiro CS, Toro DJ, Rivera LG, Machado M, Manrique A. 2012. Acidosis ruminal en bovinos lecheros: Implicaciones sobre la producción y la salud animal. Rev. Electrónica Vet. 13(4):1–11.
https://www.redalyc.org/articulo.oa?id=63623403009
GUAN H, Wittenberg KM, Ominski RH, Krause DO. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim Sci. 84(7):1896–1906. https://doi.org/10.2527/jas.2005-652
GUZMÁN E, Montes P, Monge E. 2012. Probióticos, prebióticos y simbióticos en el síndrome de intestino irritable. Acta Med. Per. 2:92–98.
http://www.scielo.org.pe/pdf/amp/v29n2/a09v29n2.pdf
HARLOW BE, Aiken GE, Klotz JL, Flythe MD. 2017. Biochanin A mitigates rumen microbial changes associated with a sub-acute ruminal acidosis challenge. J. Anim. Sci. 95(4):263–263. https://doi.org/10.2527/asasann.2017.536
HIBBARD B, Peters JP, Chester ST, Robinson JA, Kotarski SF, Croom WJ, Hagler WM. 1995. The effect of salaframine on salivary output and subacute and acute acidosis in growing beef steers. J. Anim. Sci. 73: 516-525. Doi:10.2527/1995.732516x
HIRSTOV AN, Etter RP, Ropp JK, Grandeen KL. 2004. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows. J. Anim. Sci. 82:3219-3229. https://doi.org/10.2527/2004.82113219x
JARAMILLO-LÓPEZ E, Itza-Ortiz MF, Peraza-Mercado G, Carrera-Chávez JM. 2017. Ruminal acidosis: Strategies for its control. Austral J. Vet. Sci. 49 (3):139–148. Universidad Austral de Chile. https://doi.org/10.4067/S0719-81322017000300139
JIAO PX, He ZX, Ding S, Walker ND, Cong YY, Liu FZ, Beauchemin KA Yang WZ. 2018. Impact of strain and dose of live yeast and yeast derivatives on in vitro ruminal fermentation of a high-grain diet at two pH levels. Can. J. Anim. Sci. 98(3):477–487. https://doi.org/10.1139/cjas-2017-0079
JIMENO V, Garcia P, Majano M. 2004. Acidosis ruminal y patologías asociadas en rumiantes. Ganadería. 30:80–84.
KENNEY NM, Vanzant ES, Harmon DL, McLeod KR. 2015. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. J. Anim. Sci. 93:2336-2348. https://doi.org/10.2527/jas.2014-8570
KIRAN L, Deswal S. 2020. Role of feed additives in ruminants production: A review. The Pharm. Inn. J. 9(2):394–397.
https://www.thepharmajournal.com/archives/?year=2020&vol=9&issue=2&ArticleId=4408
KLEEN JL, Hooijer GA, Rehage J, Noordhuizen JP. 2003. Subacute ruminal acidosis (SARA): a Review. J. Vet. Med. Series A. 50(8):406–414. https://doi.org/10.1046/j.1439-0442.2003.00569.x
LESMEISTER KE, Henrich AJ, Gabler MT. 2004. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics and blood parameters in neonatal dairy calves. J. Dairy Sci. 87:1832-1839.
https://doi.org/10.3168/jds.S0022-0302(04)73340-8
MIR Z, Mir PS. 1994. Effect of the addition of live yeast (Saccharomyces cerevisiae) on growth and carcass quality of steers fed high-forage or high-grain diets and on feed digestibility and in situ degradability. J. Anim. Sci. 72(3):537–545.
https://doi.org/10.2527/1994.723537x
MOLINA A. 2019. Probióticos y su mecanismo de acción en alimentación animal. Agron. Mesoam. 30(2):601-611. https://doi.org/10.15517/am.v30i2.34432
NAGARAJA TG, Lechtenberg KF. 2007. Acidosis in Feedlot Cattle. Veterinary Clinics of North America: Food Animal Practice. 23(2):333–350.
https://doi.org/10.1016/j.cvfa.2007.04.002
NORMA OFICIAL MEXICANA NOM-024-ZOO-1995. Especificaciones y características zoosanitarias para el transporte de animales, sus productos y subproductos, productos químicos, farmacéuticos biológicos y alimenticios para su uso en animales o consumo por éstos. Publicada en el Diario Oficial de la Federación el 16 de Octubre de 1995. México.
https://dof.gob.mx/nota_detalle.php?codigo=4883147&fecha=16/10/1995#gsc.tab=0
NORMA OFICIAL MEXICANA NOM-051-ZOO-1995. Trato humanitario en la movilización de animales. Publicada en el Diario Oficial de la Federación el 23 de Marzo de 1996. México.
https://dof.gob.mx/nota_detalle.php?codigo=4870842&fecha=23/03/1998#gsc.tab=0
NORMA OFICIAL MEXICANA NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Publicada en el Diario Oficial de la Federación el 12 de diciembre de 2001. México.
https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf
PELCHEN A, Peters KJ. 1998. Methane emissions from sheep. Small Rum. Res. 27:137-150. https://doi.org/10.1016/S0921-4488(97)00031-XGet rights and content
RAN T, Saleem AM, Beauchemin KA, Penner GB, Yang W. 2021. Processing index of barley grain and dietary undigested neutral detergent fiber concentration affected chewing behavior, ruminal pH, and total tract nutrient digestibility of heifers fed a high-grain diet. J. Anim. Sci. 99:1. https://doi.org/10.1093/jas/skab011
RUIZ O, Castillo Y, Arzola C, Burrola E, Salinas J, Corral A, Hume ME, Murillo M, Itza M. 2016. Effects of Candida norvegensis Live Cells on In vitro Oat Straw Rumen Fermentation. Asian Australs. J. Anim. Sci. 29(2):211-218.
https://doi.org/10.5713/ajas.15.0166
SCHOLLJEGERDES EJ. 2020. Choosing an external marker for measuring intake and digestibility in ruminants. J. Anim Sci. 98: 79–79. https://doi.org/10.1093/jas/skaa2
SHIMADA A. 2015. Nutrición animal. 3a ed. Editorial Trillas. México. ISBN: 978-607-17-3121-0.
SWYERS KL, Wagner JJ, Dorton KL, Archibeque SL. 2014. Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavy-weight yearling beef steers. J. Anim. Sci. 92:2538-2545. https://doi.org/10.2527/jas.2013-7559
VYAS D, Uwizeye A, Mohammed R, Yang WZ, Walker ND, Beauchemin KA. 2014. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci. 92(2):724–732. https://doi.org/10.2527/jas.2013-7072
WILSON BK, Holland BP, Step DL, Jacob ME, VanOverbeke DL, Richards CJ, Nagaraja TG, Krehbiel CR. 2016. Feeding wet distillers grains plus solubles with and without a direct-fed microbial to determine performance, carcass characteristics, and fecal shedding of Escherichia coli O157:H7 in feedlot heifers. J. Anim. Sci. 94:297-305. https://doi.org/10.2527/jas.2015-9601
WOLIN MJ. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 40:1452-1459. https://www.scirp.org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2481347
ZANINE AM, Bonelli EA, de Souza AL, Ferreira DJ, Santos EM, Ribeiro MD, Pinho RMA. 2016. Effects of Streptococcus bovis isolated from bovine rumen on the fermentation characteristics and nutritive value of Tanzania Grass Silage. The Scientific World J. 16:1-6. https://doi.org/10.1155/2016/8517698
ZHANG X, Ding Y, Qu M, Lu D. 2014. Effets bénéfiques de l’administration ruminale d’oligosaccharides sur les fonctions du système immunitaire chez le mouton. Canadian J. Anim. Sci. 94(4):679–684. https://doi.org/10.4141/CJAS-2014-068