Impacto de la densidad poblacional en el sistema inmune, crecimiento y supervivencia de Litopenaeus vannamei

Autores

Palavras-chave:

hemocitos, nitrito, calidad del agua, cultivo superintensivo, densidad de siembra

Resumo

El estudio evaluó los efectos de la densidad de población en la producción de hemocitos de Litopenaeus vannamei, así como su impacto en el crecimiento, condición y supervivencia en un cultivo con mínima reposición de agua. Se analizaron tres densidades (TA = 300, TB = 500, TC = 700 org m-3) durante 83 días. La calidad del agua se mantuvo dentro de rangos adecuados, sin embargo, las concentraciones de NO2-N y NO3-N fueron más altas en TC. Se observó que la tasa de crecimiento y supervivencia disminuyeron con el aumento de la densidad, donde TC es el más afectado. El número de hemocitos, incluye hialinos, semigranulares, granulares y totales, fue mayor en TC. Se encontró una alta correlación negativa entre el conteo de hemocitos y las concentraciones de NO2-N, así como entre el peso-longitud del camarón y el conteo de hemocitos. Los resultados sugieren que una mayor densidad de población afecta negativamente la respuesta inmune del camarón, ya que incrementa el uso de las reservas de energía en procesos de homeostasis, lo que reduce su rendimiento productivo y el crecimiento.

http://dx.doi.org/10.21929/abavet2025.4                  

e2024-5

 https://www.youtube.com/watch?v=DFUy_lBLS1g

 

Referências

AGUILAR V, Racotta IS, Goytortúa E, Wille M, Sorgeloos P, Civera R, Palacios E. 2011. The influence of dietary arachidonic acid on the immune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition. 18(3):258-271. https://doi.org/10.1111/j.1365-2095.2011.00892.x

AMPARYUP P, Charoensapsri W, Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology. 34(4):990-1001. https://doi.org/10.1016/j.fsi.2012.08.019

ARAMBUL-MUÑOZ E, Ponce-Palafox JT, Claro De Los Santos R, Aragón-Noriega EA, Rodríguez-Domínguez G, Castillo-Vargasmachuca SG. 2019. Influence of stocking density on production and water quality of a photoheterotrophic intensive system of white shrimp (Penaeus vannamei) in circular lined grow-out ponds, with minimal water replacement. Latin American Journal of Aquatic Research. 47(3):449-455. http://dx.doi.org/10.3856/vol47-issue3-fulltext-7

AVNIMELECH Y. 2006. Bio-filters: the need for an new comprehensive approach. Aquacultural Engineering. 34(3):172-178. https://doi.org/10.1016/j.aquaeng.2005.04.001

AVNIMELECH Y. 2009. Biofloc technology: A practical guide book. World Aquaculture Society. https://www.cabdirect.org/cabdirect/abstract/20113266301

BARDERA G, Owen MA, Façanha FN, Alcaraz-Calero JM, Alexander ME, Sloman KA. 2021. The influence of density and dominance on Pacific white shrimp (Litopenaeus vannamei) feeding behaviour. Aquaculture. 531:735949.

https://doi.org/10.1016/j.aquaculture.2020.735949

BOYD CE. 1998. Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn University. http://hdl.handle.net/11200/49690

BOYD CE. 2019. Water quality: An introduction springer nature Switzerland AG. Cham, Switzerland. https://doi.org/10.1007/978-3-030-23335-8

CABRERA E, Marcelo Z, Reyes W, Azañero C. 2019. Efecto de dietas con alta concentración de Saccharomyces cerevisiae sobre la proliferación de hemocitos en camarones Cryphiops caementarius machos. Revista de Investigaciones Veterinarias del Perú. 30 (3): 1057-1067. ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i3.16733

CAMPA-CÓRDOVA AI, Hernández-Saavedra NY, De Philippis R, Ascencio F. 2002. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphated polysaccharide. Fish & Shellfish Immunology. 12(4):353-366.

https://doi.org/10.1006/fsim.2001.0377

DIREKBUSARAKOM S, Danayadol Y. 1998. Effect of oxygen depletion on some parameters of the immune system in black tiger shrimp (Penaeus monodon): 147-149 In: Advances in shrimp biotechnology. BIOTEC The National Center for Genetic Engineering and Biotechnology Thailand. https://www.slideshare.net/lichlinhlam/advances-in-shrimp-biotechnology

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2020. El estado mundial de la pesca y la acuacultura. La sostenibilidad en acción. Roma, Italia. Organización de las Naciones Unidas. ISBN 978-92-5-132756-2.

https://doi.org/10.4060/ca9229es

FLECKENSTEIN LJ, Kring NA, Tierney TW, Fisk JC, Lawson BC, Ray AJ. 2020. The effects of artificial substrate and stocking density on Pacific white shrimp (Litopenaeus vannamei) performance and water quality dynamics in high tunnel-based biofloc systems. Aquacultural Engineering. 90:102093. https://doi.org/10.1016/j.aquaeng.2020.102093

FLEGEL TW. 2019. A future vision for disease control in shrimp aquaculture. Journal of the World Aquaculture Society. 50(2):249-266. https://doi.org/10.1111/jwas.12589

HAMILTON KA, Chen A, Johnson EDG, Gitter A, Kozak S, Niquice C, Gurian PL. 2018. Salmonella risks due to consumption of aquaculture-produced shrimp. Microbial Risk Analysis. 9:22-32. https://doi.org/10.1016/j.mran.2018.04.001

HARTINAH T, La Paturusi LP, Ratsanari R, Rimal H, Dahlia D, Rustam R. 2017. Performance of total haemocyte count and survival rate the tiger prawn Penaeus monodon fabricius Juvenile Rearing at High Density. Aquacultura Indonesia. 18(1):9-14. http://aquasiana.org/index.php/ai/article/view/77

HOSE JE, Cross JN, Smith SG, Diehl D. 1987. Elevated circulating erythrocyte micronuclei in fishes from contaminated sites off southern California. Marine Environmental Research. 22(3):167-176. https://doi.org/10.1016/0141-1136(87)90034-1

JOHANSSON MW, Keyser P, Sritunyalucksana K, Söderhäll K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture. 191:45–52.

https://doi.org/10.1016/S0044-8486(00)00418-X

KOIWAI K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R. 2021. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife, 10, e66954. https://doi.org/10.7554/eLife.66954

LIANG Z, Liu R, Zhao D, Wang L, Sun M, Wang M, Song L. 2016. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish & shellfish immunology. 54:523-528. https://doi.org/10.1016/j.fsi.2016.05.009

LIN YC, Chen JC, Chen YY, Yeh ST, Chen LL, Huang CL, Li CC. 2015. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology. 45(1):104-111. https://doi.org/10.1016/j.fsi.2015.02.012

MARTINS MA, Poli MA, Legarda EC, Pinheiro IC, Carneiro RFS, Pereira SA, do Nascimento Vieira F. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture. 514:734517.

https://doi.org/10.1016/j.aquaculture.2019.734517

NOM (Norma Oficial Mexicana, NOM-062-ZOO-1999). 1999. de especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. México. http://dof.gob.mx/nota_detalle.php?codigo=764738&fecha=18/06/2001

PERAZZOLO LM, Gargioni R, Ogliari P, Barracco MA. 2002. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture. 214(1-4):19-33.

https://doi.org/10.1016/S0044-8486(02)00137-0

PINTO MR, Lucena MN, Faleiros RO, Almeida EA, McNamara JC, Leone FA. 2016. Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Aquatic Toxicology. 170:13-23.

https://doi.org/10.1016/j.aquatox.2015.10.021

RADDI G, Barletta ABF, Efremova M, Ramirez JL, Cantera R, Teichmann SA, Barillas-Mury C, Billker O. 2020. Mosquito cellular immunity at single-cell resolution. Science. 369:1128–1132. https://doi.org/10.1126/science.abc0322

RAY AJ, Rode R. 2021. Small-scale, year-round shrimp farming in temperate climates. North Central Regional Aquaculture Center. Aquaculture Magazine. 1-12.

https://store.extension.iastate.edu/product/16228

SHARAWY ZZ, Abbas EM, Abdelkhalek NK, Ashry OA, Abd El-Fattah LS, El-Sawy MA, El-Haroun E. 2022. Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei Larvae in intensive culture. Aquaculture. 546:737397.

https://doi.org/10.1016/j.aquaculture.2021.737397

SHARAWY ZZ, Ashour M, Abbas E, Ashry O, Helal M, Nazmi H, Goda A. 2020. Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research. 51(6):2216-2228. https://doi.org/10.1111/are.14566

SÖDERHÄLL K, Smith VJ. 1983. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Developmental & Comparative Immunology. 7:229–239. https://doi.org/10.1016/0145-305X(83)90004-6

TASSANAKAJON A, Somboonwiwat K, Supungul P, Tang S. 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & shellfish immunology. 34(4):954-967. https://doi.org/10.1016/j.fsi.2012.09.021

TATTIKOTA SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon S-H, Comjean A, Li F, Dervis F, Hung R-J, Nam J-W, Ho SS, Shim J, Perrimon N. 2020. A single-cell survey of Drosophila blood. eLife. 9:e54818. https://doi.org/10.7554/eLife.54818

TIERNEY TW, Ray AJ. 2018. Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering. 82:73-79.

https://doi.org/10.1016/j.aquaeng.2018.06.002

TIERNEY TW, Fleckenstein LJ, Ray AJ. 2020. The effects of density and artificial substrate on intensive shrimp Litopenaeus vannamei nursery production. Aquacultural Engineering. 89:102063. https://doi.org/10.1016/j.aquaeng.2020.102063

UNESCO (United Nations Educational, Scientific, and Cultural Organization). 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission. Manual and Guides 12. Paris, France. Pp. 53. https://repository.oceanbestpractices.org/handle/11329/87

VARGAS-ALBORES F, Guzmán MA, Ochoa JL. 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comparative Biochemistry and Physiology Part A: Physiology. 106(2): 299-303. https://doi.org/10.1016/0300-9629(93)90516-7

ZAHRAIE B, Szidarovszky F, Karamouz M. 2019. Water quality management. In: Samocha TM. (1st. Ed.), Sustainable Biofloc Systems for Marine Shrimp. Elsevier B.V. ISBN: 9780128180402. Pp. 133-151. https://www.elsevier.com/books/sustainable-biofloc-systems-for-marine-shrimp/samocha/978-0-12-818040-2

ZHANG X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X, Ma KY, Wang X, Lin W, Wang L, Zhu X. Zhang C, Zhang J, Jin S, Yu K, Kong J, Xu P, Chen J, Zhang H, Sorgeloos P, Sagi A, Alcivar-Warren A, Liu Z, Wang L, Ruan J, Chu KH, Liu B, Li F, Xiang J. 2019. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications. 10:356. https://doi.org/10.1038/s41467-018-08197-4

ZHAO M, Yao, D, Li S, Zhang Y, Aweya JJ. 2020. Effects of ammonia on shrimp physiology and immunity: a review. Reviews in Aquaculture. 12(4):2194-2211.

https://doi.org/10.1111/raq.12429

ZULKARNAIN R, Adiyana K, Nugroho H, Nugraha B, Thesiana L, Supriyono E. 2020. Selection of intensive shrimp farming technology for small farmers with analytical hierarchy process: A case for whiteleg shrimp (Litopenaeus vannamei). In IOP Conference Series: Earth and Environmental Science. 404(1):12-17.

https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012017

Publicado

2025-09-11

Edição

Seção

Artigos Originais

Artigos mais lidos pelo mesmo(s) autor(es)