Impact of stock density on the immune system, growth, and survival of Litopenaeus vannamei
Keywords:
hemocytes, nitrite, water quality, super-intensive culture, stocking densityAbstract
The study evaluated the effects of population density on hemocyte production in the white shrimp Litopenaeus vannamei and its impact on growth, condition, and survival in a culture system with minimal water exchange. Three densities (TA = 300, TB = 500, TC = 700 org m-3) were analyzed over 83 days. Water quality remained within suitable ranges, but NO2-N and NO3-N levels were higher in TC. Growth rates and survival decreased with increased density, particularly in TC, which also showed a higher number of hemocytes, including hyaline, semigranular, granular, and total hemocytes. A strong negative correlation was found between hemocyte count and NO2-N concentrations, as well as between shrimp weight-length and hemocyte count. The results suggest that higher population density negatively affects the shrimp's immune response by increasing the use of energy reserves for homeostasis, thereby reducing growth and overall productivity.
http://dx.doi.org/10.21929/abavet2025.4
e2024-5
https://www.youtube.com/watch?v=DFUy_lBLS1g
References
AGUILAR V, Racotta IS, Goytortúa E, Wille M, Sorgeloos P, Civera R, Palacios E. 2011. The influence of dietary arachidonic acid on the immune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition. 18(3):258-271. https://doi.org/10.1111/j.1365-2095.2011.00892.x
AMPARYUP P, Charoensapsri W, Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology. 34(4):990-1001. https://doi.org/10.1016/j.fsi.2012.08.019
ARAMBUL-MUÑOZ E, Ponce-Palafox JT, Claro De Los Santos R, Aragón-Noriega EA, Rodríguez-Domínguez G, Castillo-Vargasmachuca SG. 2019. Influence of stocking density on production and water quality of a photoheterotrophic intensive system of white shrimp (Penaeus vannamei) in circular lined grow-out ponds, with minimal water replacement. Latin American Journal of Aquatic Research. 47(3):449-455. http://dx.doi.org/10.3856/vol47-issue3-fulltext-7
AVNIMELECH Y. 2006. Bio-filters: the need for an new comprehensive approach. Aquacultural Engineering. 34(3):172-178. https://doi.org/10.1016/j.aquaeng.2005.04.001
AVNIMELECH Y. 2009. Biofloc technology: A practical guide book. World Aquaculture Society. https://www.cabdirect.org/cabdirect/abstract/20113266301
BARDERA G, Owen MA, Façanha FN, Alcaraz-Calero JM, Alexander ME, Sloman KA. 2021. The influence of density and dominance on Pacific white shrimp (Litopenaeus vannamei) feeding behaviour. Aquaculture. 531:735949.
https://doi.org/10.1016/j.aquaculture.2020.735949
BOYD CE. 1998. Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn University. http://hdl.handle.net/11200/49690
BOYD CE. 2019. Water quality: An introduction springer nature Switzerland AG. Cham, Switzerland. https://doi.org/10.1007/978-3-030-23335-8
CABRERA E, Marcelo Z, Reyes W, Azañero C. 2019. Efecto de dietas con alta concentración de Saccharomyces cerevisiae sobre la proliferación de hemocitos en camarones Cryphiops caementarius machos. Revista de Investigaciones Veterinarias del Perú. 30 (3): 1057-1067. ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i3.16733
CAMPA-CÓRDOVA AI, Hernández-Saavedra NY, De Philippis R, Ascencio F. 2002. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphated polysaccharide. Fish & Shellfish Immunology. 12(4):353-366.
https://doi.org/10.1006/fsim.2001.0377
DIREKBUSARAKOM S, Danayadol Y. 1998. Effect of oxygen depletion on some parameters of the immune system in black tiger shrimp (Penaeus monodon): 147-149 In: Advances in shrimp biotechnology. BIOTEC The National Center for Genetic Engineering and Biotechnology Thailand. https://www.slideshare.net/lichlinhlam/advances-in-shrimp-biotechnology
FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2020. El estado mundial de la pesca y la acuacultura. La sostenibilidad en acción. Roma, Italia. Organización de las Naciones Unidas. ISBN 978-92-5-132756-2.
https://doi.org/10.4060/ca9229es
FLECKENSTEIN LJ, Kring NA, Tierney TW, Fisk JC, Lawson BC, Ray AJ. 2020. The effects of artificial substrate and stocking density on Pacific white shrimp (Litopenaeus vannamei) performance and water quality dynamics in high tunnel-based biofloc systems. Aquacultural Engineering. 90:102093. https://doi.org/10.1016/j.aquaeng.2020.102093
FLEGEL TW. 2019. A future vision for disease control in shrimp aquaculture. Journal of the World Aquaculture Society. 50(2):249-266. https://doi.org/10.1111/jwas.12589
HAMILTON KA, Chen A, Johnson EDG, Gitter A, Kozak S, Niquice C, Gurian PL. 2018. Salmonella risks due to consumption of aquaculture-produced shrimp. Microbial Risk Analysis. 9:22-32. https://doi.org/10.1016/j.mran.2018.04.001
HARTINAH T, La Paturusi LP, Ratsanari R, Rimal H, Dahlia D, Rustam R. 2017. Performance of total haemocyte count and survival rate the tiger prawn Penaeus monodon fabricius Juvenile Rearing at High Density. Aquacultura Indonesia. 18(1):9-14. http://aquasiana.org/index.php/ai/article/view/77
HOSE JE, Cross JN, Smith SG, Diehl D. 1987. Elevated circulating erythrocyte micronuclei in fishes from contaminated sites off southern California. Marine Environmental Research. 22(3):167-176. https://doi.org/10.1016/0141-1136(87)90034-1
JOHANSSON MW, Keyser P, Sritunyalucksana K, Söderhäll K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture. 191:45–52.
https://doi.org/10.1016/S0044-8486(00)00418-X
KOIWAI K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R. 2021. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife, 10, e66954. https://doi.org/10.7554/eLife.66954
LIANG Z, Liu R, Zhao D, Wang L, Sun M, Wang M, Song L. 2016. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish & shellfish immunology. 54:523-528. https://doi.org/10.1016/j.fsi.2016.05.009
LIN YC, Chen JC, Chen YY, Yeh ST, Chen LL, Huang CL, Li CC. 2015. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology. 45(1):104-111. https://doi.org/10.1016/j.fsi.2015.02.012
MARTINS MA, Poli MA, Legarda EC, Pinheiro IC, Carneiro RFS, Pereira SA, do Nascimento Vieira F. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture. 514:734517.
https://doi.org/10.1016/j.aquaculture.2019.734517
NOM (Norma Oficial Mexicana, NOM-062-ZOO-1999). 1999. de especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. México. http://dof.gob.mx/nota_detalle.php?codigo=764738&fecha=18/06/2001
PERAZZOLO LM, Gargioni R, Ogliari P, Barracco MA. 2002. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture. 214(1-4):19-33.
https://doi.org/10.1016/S0044-8486(02)00137-0
PINTO MR, Lucena MN, Faleiros RO, Almeida EA, McNamara JC, Leone FA. 2016. Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Aquatic Toxicology. 170:13-23.
https://doi.org/10.1016/j.aquatox.2015.10.021
RADDI G, Barletta ABF, Efremova M, Ramirez JL, Cantera R, Teichmann SA, Barillas-Mury C, Billker O. 2020. Mosquito cellular immunity at single-cell resolution. Science. 369:1128–1132. https://doi.org/10.1126/science.abc0322
RAY AJ, Rode R. 2021. Small-scale, year-round shrimp farming in temperate climates. North Central Regional Aquaculture Center. Aquaculture Magazine. 1-12.
https://store.extension.iastate.edu/product/16228
SHARAWY ZZ, Abbas EM, Abdelkhalek NK, Ashry OA, Abd El-Fattah LS, El-Sawy MA, El-Haroun E. 2022. Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei Larvae in intensive culture. Aquaculture. 546:737397.
https://doi.org/10.1016/j.aquaculture.2021.737397
SHARAWY ZZ, Ashour M, Abbas E, Ashry O, Helal M, Nazmi H, Goda A. 2020. Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research. 51(6):2216-2228. https://doi.org/10.1111/are.14566
SÖDERHÄLL K, Smith VJ. 1983. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Developmental & Comparative Immunology. 7:229–239. https://doi.org/10.1016/0145-305X(83)90004-6
TASSANAKAJON A, Somboonwiwat K, Supungul P, Tang S. 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & shellfish immunology. 34(4):954-967. https://doi.org/10.1016/j.fsi.2012.09.021
TATTIKOTA SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon S-H, Comjean A, Li F, Dervis F, Hung R-J, Nam J-W, Ho SS, Shim J, Perrimon N. 2020. A single-cell survey of Drosophila blood. eLife. 9:e54818. https://doi.org/10.7554/eLife.54818
TIERNEY TW, Ray AJ. 2018. Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquacultural Engineering. 82:73-79.
https://doi.org/10.1016/j.aquaeng.2018.06.002
TIERNEY TW, Fleckenstein LJ, Ray AJ. 2020. The effects of density and artificial substrate on intensive shrimp Litopenaeus vannamei nursery production. Aquacultural Engineering. 89:102063. https://doi.org/10.1016/j.aquaeng.2020.102063
UNESCO (United Nations Educational, Scientific, and Cultural Organization). 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission. Manual and Guides 12. Paris, France. Pp. 53. https://repository.oceanbestpractices.org/handle/11329/87
VARGAS-ALBORES F, Guzmán MA, Ochoa JL. 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comparative Biochemistry and Physiology Part A: Physiology. 106(2): 299-303. https://doi.org/10.1016/0300-9629(93)90516-7
ZAHRAIE B, Szidarovszky F, Karamouz M. 2019. Water quality management. In: Samocha TM. (1st. Ed.), Sustainable Biofloc Systems for Marine Shrimp. Elsevier B.V. ISBN: 9780128180402. Pp. 133-151. https://www.elsevier.com/books/sustainable-biofloc-systems-for-marine-shrimp/samocha/978-0-12-818040-2
ZHANG X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X, Ma KY, Wang X, Lin W, Wang L, Zhu X. Zhang C, Zhang J, Jin S, Yu K, Kong J, Xu P, Chen J, Zhang H, Sorgeloos P, Sagi A, Alcivar-Warren A, Liu Z, Wang L, Ruan J, Chu KH, Liu B, Li F, Xiang J. 2019. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications. 10:356. https://doi.org/10.1038/s41467-018-08197-4
ZHAO M, Yao, D, Li S, Zhang Y, Aweya JJ. 2020. Effects of ammonia on shrimp physiology and immunity: a review. Reviews in Aquaculture. 12(4):2194-2211.
https://doi.org/10.1111/raq.12429
ZULKARNAIN R, Adiyana K, Nugroho H, Nugraha B, Thesiana L, Supriyono E. 2020. Selection of intensive shrimp farming technology for small farmers with analytical hierarchy process: A case for whiteleg shrimp (Litopenaeus vannamei). In IOP Conference Series: Earth and Environmental Science. 404(1):12-17.
https://iopscience.iop.org/article/10.1088/1755-1315/404/1/012017
