Biofloc en el tratamiento de aguas residuales del cultivo de peces

Autores/as

Palabras clave:

acuicultura responsable, biorremediación, calidad de agua, transformación del nitrógeno

Resumen

La industria acuícola se ha desarrollado gradualmente con el paso de los años debido a los beneficios económicos y sociales que se obtienen, pero como cualquier actividad agropecuaria tiene un impacto ambiental, tanto por la explotación continua de huella hídrica como por los desechos de producción. La concientización ambiental en acuicultura ha sido un paso enorme en la mejora de calidad para la industria dando la oportunidad de disminuir y aprovechar la gran mayoría de los residuos que se encuentran en el agua residual, con lo que se permite incluso conseguir subproductos que pueden proporcionan ingresos. En este trabajo se presenta una revisión de los tratamientos de aguas residuales en acuicultura desde los sistemas clásicos hasta los desarrollados en la actualidad, permitiendo conocer las ventajas y desventajas de cada uno, con el fin de explorar las alternativas disponibles para el desarrollo de una acuicultura responsable.

http://dx.doi.org/10.21929/abavet2024.18     

e2022-13.

https://www.youtube.com/watch?v=7QNHpiOL_JI

 

Citas

ABAKARI G, Luo G, Kombat EO. 2020. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquaculture and Fisheries. 6 (5): 441-447. ISSN: 2668-550X. https://doi.org/10.1016/j.aaf.2020.05.005

AMENGUAL-MORRO C, Niell GM, Martínez-Taberner A. 2012. Phytoplankton as bioindicator for waste stabilization ponds. Journal of Environmental Management. 95: S71-6. ISSN: 0301-4797. https://doi.org/10.1016/j.jenvman.2011.07.008

AVNIMELECH Y. 1999. Carbon: nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176 (3-4): 227-235. ISSN: 0044-8486.

https://doi.org/10.1016/S0044-8486(99)00085-X

AVNIMELECH Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264:140–147. ISSN: 0044-8486.

https://doi.org/10.1016/j.aquaculture.2006.11.025

AVNIMELECH Y. 2009. Biofloc Technology – A practical Guidebook. EUA, Third edition. The World Aquaculture Society. Pp. 272-273. ISBN: 978-1888807226. https://1lib.mx/book/5503837/ce4a50

AVNIMELECH Y. 2011. Tilapia Production Using Biofloc Technology. Saving Water, Waste Recycling ImproÚltimaonomics. Global Aquaculture Alliance. Pp. 66-68. ISBN: 976188807165. https://www.aquaculturealliance.org/advocate/tilapia-production-using-biofloc-technology/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA

AZHAR MH, Supriyono E, Nirmala K, Ekasari J. 2016. Organic carbon source and C/N ratio affect inorganic nitrogen profile in the biofloc-based culture media of Pacific white shrimp (Litopenaeus vannamei). ILMU KELAUTAN Indonesian. Journal of Marine Sciences. ISSN: 2661-3239. 21(1): 23-28. https://doi.org/10.14710/ik.ijms.21.1.23-28

AZIM ME, Little DC. 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 283 (1): 29-35. ISSN: 0044-8486.

https://doi.org/10.1016/j.aquaculture.2008.06.036

BACAICOA RC. 2016. Integración de la técnica de depuración de aguas residuales mediante humedales con los sistemas de recirculación para la acuicultura. Revista AquaTIC. 37. España. https://www.redalyc.org/articulo.oa?id=49425906001

BAKAR NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration and Biodegradation. 102:100-106. ISSN: 0964-8305.

https://doi.org/10.1016/j.ibiod.2015.04.001

BUCCO S, Padoin N, Netto WS, Soares HM. 2014. Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source. Bioprocess and Biosystems Engineering. 37(10): 2009-17. ISSN: 1615-7605.

https://doi.org/10.1007/s00449-014-1176-7.

BUTLER E, Hung YT, Al Ahmad MS, Yeh RYL, Liu RLH, Fu YP. 2017. Oxidation pond for municipal wastewater treatment. Applied water science. 7(1):31-51. ISSN: 2190-5495. https://doi.org/10.1007/s13201-015-0285-z

CANO R. 2007. Tratamiento de aguas residuales en acuicultura. Revista Electrónica de Ingeniería en Producción Acuícola. 48. Colombia.

https://revistas.udenar.edu.co/index.php/reipa/article/view/1590

CERVANTES S. 2016. Evaluación de tres fuentes de carbono a base de melaza y harina de trigo en la calidad del Biofloc en el crecimiento de tilapia Nilótica Oreochromis niloticus. (Tesis de Maestría). Universidad Autónoma de Nayarit, Posgrado en ciencias biológico, agropecuarias y pesqueras, Tepic, Nayarit, México. Pp. 44.

http://dspace.uan.mx:8080/jspui/handle/123456789/1338

CHEN S, Ling J, Blancheton JP. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering. 34(3): 179-97. ISSN: 0144-8609.

https://doi.org/10.1016/j.aquaeng.2005.09.004

CIRELLI AF. 2012. El agua: un recurso esencial. Química viva. 11(3): 147–170. E-ISSN: 1666-7948. https://www.redalyc.org/articulo.oa?id=86325090002

COLT J. 2006. Water quality requirements for reuse systems. Aquacultural Engineering. 34(3): 143-56. EUA. ISSN: 0144-8609. https://doi.org/10.1016/j.aquaeng.2005.08.011

CRAB R, Avnilemech Y, Defoirdt T, Bossier P, Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. 270(1-4): 1-14. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2007.05.006

CRAIG LB, Andrew JR, John WL, Avnimelech Y. 2012. Biofloc-based Aquaculture Systems: Aquaculture Production Systems. James H Tidwell. Pp. 278-306. ISBN: 9780813801261. https://doi.org/10.1002/9781118250105.ch12

EBELING JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257(1-4):346-358. ISSN: 0044-8486.

https://doi.org/10.1016/j.aquaculture.2006.03.019

EMERENCIANO M, Gaxiola G, Cuzon G. 2013. Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass now-cultivation and utilization. First Edition. Pp. 301-328. IntechOpen. https://doi.org/10.5772/53902

EMERENCIANO M, Martínez-Córdova, Martínez-Porchas, Miranda-Baeza. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture, Water Quality. First Edition. Pp. 91-109. IntechOpen, https://doi.org/10.5772/66416

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2016. El Estado mundial de la pesca y la acuicultura. Departamento de Pesca y Acuicultura de la FAO, Roma, Italia, Pp. 34. http://www.fao.org/family-farming/detail/es/c/466050/

FONTENOT Q, Bonvillain C, Kilgen M, Boopathy R. 2007. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technology. 98(9): 1700-1703. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2006.07.031.

GARBISU C, Amézaga I, Alkorta I. 2002. Biorremediación y Ecología. Ecosistemas. 11(3). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/591/558

JIMÉNEZ-MONTEALEGRE R, Zamora-Castro J, Zúñiga-Calero G. 2015. Determinación del flujo de agua para la biorremediación en sistemas recirculados acuaculturales utilizando tapetes microbianos construidos. Latin American Journal of Aquatic Research. 43(1):234-47. ISSN: 0718-560X. http://dx.doi.org/10.3856/vol43-issue1-fulltext-20

LEKANG OI. 2013. Aquaculture Engineering. Second Edition Chichester. Reino Unido. Pp. 179-189. Willey-Blackwell. ISBN: 9781118496077.

https://doi.org/10.1002/9781118496077

LEMARIÉ G, Dosdat A, Covés D, Dutto G, Gasset E, Person-Le Ruyet J. 2004. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture. 229(4): 479-491. https://doi.org/10.1016/S0044-8486(03)00392-2

LEPINE C, Christianson L, Sharrer K, Summerfelt S. 2016. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater. Journal of Environment Quality. 45(3): 813. ISSN: 1537-2537. https://doi.org/10.2134/jeq2015.05.0242

LI C, Li J, Liu G, Deng Y, Zhu S, Ye Z, Liu D. 2019. Performance and microbial community analysis of combined denitrification and biofloc technology (CDBFT) system treating nitrogen-rich aquaculture wastewater. Bioresource Technology. 288: 121-582. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2019.121582

LIU D, Li J, Li C, Deng Y, Zhang Z, Ye Z, Zhu S. 2018. Poly (butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system. Scientific Reports. 8(1): 3289. ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-21702-5

LIU Y, Li J, Feng J, Liu Q, Nan F, Xie S. 2019. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae: microalgae-based real aquaculture wastewater treatment. Journal of Chemical Technology and Biotechnology. 94(3): 900-910. ISSN: 1097-4660. https://doi.org/10.1002/jctb.5837

LOVERA KPZ, Brito LO, Arana LAV, Galvez AO, Cárdenas JMV. 2018. Cultivo de alevinos de tilapia em sistema de bioflocossob diferentes relações carbono/nitrogênio. Boletim do Instituto de Pesca. 43(3): 399-407. ISSN: 1678-2305.

https://doi.org/10.20950/1678-2305.2017v43n3p399

MARA D, Mills S, Pearson H, Alabaster G. 1992. Waste stabilization ponds, a viable alternative for small community treatment systems. Water and Environment Journal. 6:72–78. ISSN: 1747-6593. https://doi.org/10.1111/j.1747-6593.1992.tb00740.x

MARTÍNEZ C, Martínez P, López E, Campaña T, Miranda B, Ballester E, Porchas C, Martínez-Córdova L. 2012. Avances en nutrición Acuícola: Memorias del X Simposio Internacional de Alimento natural en acuacultura: Universidad Autónoma de Nuevo León, Monterrey, México. Pp. 668-699.

https://www.researchgate.net/publication/237377591_Alimento_natural_en_acuacultura_una_revision_actualizada

MONROY-DOSTA M, Lara-Andrade D, Castro-Mejía J, Castro-Mejía G, Coelho-Emerenciano G. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biología marina y oceanografía. 48(3): 511-520. ISSN: 0718-1957. https://doi.org/10.4067/S0718-19572013000300009

MOSQUERA-CORRAL A, Campos F, Méndez R. 2005. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry. 40:3109-3118. ISSN: 1359-5113.

https://doi.org/10.1016/j.procbio.2005.03.042

NOGA EJ. 2010. Fish Disease Diagnosis and Treatment. Second edition. Pp. 257-285. Wiley-Blackwe. https://books.google.es/books?id=K5HDwAAQBAJ&lpg=PR9&ots=l_1MSAcYx8&dq=Fish%20Disease%20Diagnosis%20and%20Treatment&lr&hl=es&pg=PP1#v=onepage&q=Fish%20Disease%20Diagnosis%20and%20Treatment&f=false

OCHOA CDC, Montoya RA. 2010. Consorcios microbianos: una metáfora biológica aplicada a la asociatividad empresarial en cadenas productivas agropecuarias. Bogotá, CO. Revista Facultad de Ciencias Económicas: Investigación y Reflexión. 18(2): 60. ISSN: 0121-6805. https://www.redalyc.org/articulo.oa?id=90920053003

PANIGRAHI A, Saranya C, Sundaram M, Kannan SV, Das R, Kumar S, Otta K. 2018. Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish and shellfish immunology. 81: 329-337. ISSN: 1050-4648. https://doi.org/10.1016/j.fsi.2018.07.035

PARADA E, Peredo S, Cárdenas S, Valdebenito I, Peredo M. 2008. Diplodon chilensis gray, 1828 (bivalvia: hyriidae) a potential residual waters depurator on inland water salmonid fish-farms: a laboratory scale study. Gayana (Concepción). 72(1): 68-78. ISSN 0717-652X. https://doi.org/10.4067/S0717-65382008000100009

PÉREZ-FUENTES A, Hernández-Vergara P, Pérez-Rostro I, Fogel I. 2016. C: N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture. 452:247-251. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.11.010

PIEDRAHITA H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. 226(1-4):35-44. ISSN: 0044-8486. https://doi.org/10.1016/S0044-8486(03)00465-4

ROJAS-RODRÍGUEZ IS, Salazar-Solano V. 2018. La acuicultura frente a los impactos de la actividad agrícola en la calidad de los servicios ambientales de la cuenca del río mayo. Una propuesta para su abordaje desde la economía ecológica. Estudios sociales (Hermosillo, Sonora). 28(51). ISSN: 0188-4557. https://doi.org/10.24836/es.v28i51.507

SERRA P, Gaona A, Furtado S, Poersch H, Wasielesky W. 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture international. 23(6):1325-1339. ISSN: 1573-143X. https://doi.org/10.1007/s10499-015-9887-6

SFEZ S, Van Den Hende S, Taelman E, De Meester S, Dewulf J. 2015. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: from up-scaling to system integration. Bioresource Technology. 190:321-31. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2015.04.088

SIGEE DC. 2005. Freshwater microbiology: Biodiversity and dynamic interactions of microorganisms in the aquatic environment. John Wiley & Sons Ltd. Pp. 544. ISBN: 0471485284. https://doi.org/10.1002/0470011254

SILVA L, Falcon R, Pessôa C, Correia S. 2017. Carbon sources and C: N ratios on water quality for Nile tilapia farming in biofloc system. Revista Caatinga. 30(4): 1017-1027. ISSN: 0100-316X. https://doi.org/10.1590/1983-21252017v30n423rc

U.S. EPA (Environmental Protection Agency). Exposure Factors Handbook0. 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington. DC. EPA/600/R-09/052F. 2011.

https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

VAN DEN HENDE S, Beelen V, Bore G, Boon N, Vervaeren H. 2014. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresource Technology. 159:342-54. ISSN: 0960-8524.

https://doi.org/10.1016/j.biortech.2014.02.113

VAN DEN HENDE S, Claessens L, De Muylder E, Boon N, Vervaeren H. 2016. Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquaculture Research. 47(4):1075-89. ISSN: 1365-2109. https://doi.org/10.1111/are.12564

WANG G, Yu E, Xie J, Yu D, Li Z, Luo W Zheng Z. 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture. 443: 98-104. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.03.015

WHO (World Health Organization). 2006. Guidelines for drinking-water quality. Vol. 1. Recommendations: addendum, 3rd ed. World Health Organization. ISBN: 9241546743. https://apps.who.int/iris/handle/10665/43242

WIK E, Lindén T, Wramner I. 2009. Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture. 287(3-4): 361-370. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2008.10.056

XU WJ, Morris TC, Samocha TM. 2015. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 453: 169-175. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.11.021

ZHU M, Deng L, Ruan J, Guo S, Shi M, Shen Z. 2015. Biological de-nitrification using poly (butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresour. Technol. 192: 603-610. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2015.06.021

Descargas

Publicado

2024-12-09

Número

Sección

Revisiones de Literatura

Artículos más leídos del mismo autor/a