Biofloc as treatment for wastewater in fish farming
Keywords:
responsible aquaculture, bioremediation, water quality, nitrogen transformationAbstract
The aquaculture industry has developed gradually over the years due to the economic and social benefits that are obtained, but like any agricultural activity it has an environmental impact, both due to the continuous exploitation of the water footprint and due to production waste. Environmental awareness in aquaculture has been a huge step in improving quality for the industry, giving the opportunity to reduce and take advantage of most of the residues found in wastewater, allowing even by-products to be obtained that can provide income. This work presents a review of wastewater treatments in aquaculture from the classic systems to those currently developed, allowing to know the advantages and disadvantages of each one, to explore the available alternatives for the development of an aquaculture responsible.
http://dx.doi.org/10.21929/abavet2024.18
e2022-13.
https://www.youtube.com/watch?v=7QNHpiOL_JI
References
ABAKARI G, Luo G, Kombat EO. 2020. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquaculture and Fisheries. 6 (5): 441-447. ISSN: 2668-550X. https://doi.org/10.1016/j.aaf.2020.05.005
AMENGUAL-MORRO C, Niell GM, Martínez-Taberner A. 2012. Phytoplankton as bioindicator for waste stabilization ponds. Journal of Environmental Management. 95: S71-6. ISSN: 0301-4797. https://doi.org/10.1016/j.jenvman.2011.07.008
AVNIMELECH Y. 1999. Carbon: nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176 (3-4): 227-235. ISSN: 0044-8486.
https://doi.org/10.1016/S0044-8486(99)00085-X
AVNIMELECH Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264:140–147. ISSN: 0044-8486.
https://doi.org/10.1016/j.aquaculture.2006.11.025
AVNIMELECH Y. 2009. Biofloc Technology – A practical Guidebook. EUA, Third edition. The World Aquaculture Society. Pp. 272-273. ISBN: 978-1888807226. https://1lib.mx/book/5503837/ce4a50
AVNIMELECH Y. 2011. Tilapia Production Using Biofloc Technology. Saving Water, Waste Recycling ImproÚltimaonomics. Global Aquaculture Alliance. Pp. 66-68. ISBN: 976188807165. https://www.aquaculturealliance.org/advocate/tilapia-production-using-biofloc-technology/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
AZHAR MH, Supriyono E, Nirmala K, Ekasari J. 2016. Organic carbon source and C/N ratio affect inorganic nitrogen profile in the biofloc-based culture media of Pacific white shrimp (Litopenaeus vannamei). ILMU KELAUTAN Indonesian. Journal of Marine Sciences. ISSN: 2661-3239. 21(1): 23-28. https://doi.org/10.14710/ik.ijms.21.1.23-28
AZIM ME, Little DC. 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 283 (1): 29-35. ISSN: 0044-8486.
https://doi.org/10.1016/j.aquaculture.2008.06.036
BACAICOA RC. 2016. Integración de la técnica de depuración de aguas residuales mediante humedales con los sistemas de recirculación para la acuicultura. Revista AquaTIC. 37. España. https://www.redalyc.org/articulo.oa?id=49425906001
BAKAR NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration and Biodegradation. 102:100-106. ISSN: 0964-8305.
https://doi.org/10.1016/j.ibiod.2015.04.001
BUCCO S, Padoin N, Netto WS, Soares HM. 2014. Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source. Bioprocess and Biosystems Engineering. 37(10): 2009-17. ISSN: 1615-7605.
https://doi.org/10.1007/s00449-014-1176-7.
BUTLER E, Hung YT, Al Ahmad MS, Yeh RYL, Liu RLH, Fu YP. 2017. Oxidation pond for municipal wastewater treatment. Applied water science. 7(1):31-51. ISSN: 2190-5495. https://doi.org/10.1007/s13201-015-0285-z
CANO R. 2007. Tratamiento de aguas residuales en acuicultura. Revista Electrónica de Ingeniería en Producción Acuícola. 48. Colombia.
https://revistas.udenar.edu.co/index.php/reipa/article/view/1590
CERVANTES S. 2016. Evaluación de tres fuentes de carbono a base de melaza y harina de trigo en la calidad del Biofloc en el crecimiento de tilapia Nilótica Oreochromis niloticus. (Tesis de Maestría). Universidad Autónoma de Nayarit, Posgrado en ciencias biológico, agropecuarias y pesqueras, Tepic, Nayarit, México. Pp. 44.
http://dspace.uan.mx:8080/jspui/handle/123456789/1338
CHEN S, Ling J, Blancheton JP. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering. 34(3): 179-97. ISSN: 0144-8609.
https://doi.org/10.1016/j.aquaeng.2005.09.004
CIRELLI AF. 2012. El agua: un recurso esencial. Química viva. 11(3): 147–170. E-ISSN: 1666-7948. https://www.redalyc.org/articulo.oa?id=86325090002
COLT J. 2006. Water quality requirements for reuse systems. Aquacultural Engineering. 34(3): 143-56. EUA. ISSN: 0144-8609. https://doi.org/10.1016/j.aquaeng.2005.08.011
CRAB R, Avnilemech Y, Defoirdt T, Bossier P, Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. 270(1-4): 1-14. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2007.05.006
CRAIG LB, Andrew JR, John WL, Avnimelech Y. 2012. Biofloc-based Aquaculture Systems: Aquaculture Production Systems. James H Tidwell. Pp. 278-306. ISBN: 9780813801261. https://doi.org/10.1002/9781118250105.ch12
EBELING JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257(1-4):346-358. ISSN: 0044-8486.
https://doi.org/10.1016/j.aquaculture.2006.03.019
EMERENCIANO M, Gaxiola G, Cuzon G. 2013. Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass now-cultivation and utilization. First Edition. Pp. 301-328. IntechOpen. https://doi.org/10.5772/53902
EMERENCIANO M, Martínez-Córdova, Martínez-Porchas, Miranda-Baeza. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture, Water Quality. First Edition. Pp. 91-109. IntechOpen, https://doi.org/10.5772/66416
FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2016. El Estado mundial de la pesca y la acuicultura. Departamento de Pesca y Acuicultura de la FAO, Roma, Italia, Pp. 34. http://www.fao.org/family-farming/detail/es/c/466050/
FONTENOT Q, Bonvillain C, Kilgen M, Boopathy R. 2007. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technology. 98(9): 1700-1703. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2006.07.031.
GARBISU C, Amézaga I, Alkorta I. 2002. Biorremediación y Ecología. Ecosistemas. 11(3). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/591/558
JIMÉNEZ-MONTEALEGRE R, Zamora-Castro J, Zúñiga-Calero G. 2015. Determinación del flujo de agua para la biorremediación en sistemas recirculados acuaculturales utilizando tapetes microbianos construidos. Latin American Journal of Aquatic Research. 43(1):234-47. ISSN: 0718-560X. http://dx.doi.org/10.3856/vol43-issue1-fulltext-20
LEKANG OI. 2013. Aquaculture Engineering. Second Edition Chichester. Reino Unido. Pp. 179-189. Willey-Blackwell. ISBN: 9781118496077.
https://doi.org/10.1002/9781118496077
LEMARIÉ G, Dosdat A, Covés D, Dutto G, Gasset E, Person-Le Ruyet J. 2004. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture. 229(4): 479-491. https://doi.org/10.1016/S0044-8486(03)00392-2
LEPINE C, Christianson L, Sharrer K, Summerfelt S. 2016. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater. Journal of Environment Quality. 45(3): 813. ISSN: 1537-2537. https://doi.org/10.2134/jeq2015.05.0242
LI C, Li J, Liu G, Deng Y, Zhu S, Ye Z, Liu D. 2019. Performance and microbial community analysis of combined denitrification and biofloc technology (CDBFT) system treating nitrogen-rich aquaculture wastewater. Bioresource Technology. 288: 121-582. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2019.121582
LIU D, Li J, Li C, Deng Y, Zhang Z, Ye Z, Zhu S. 2018. Poly (butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system. Scientific Reports. 8(1): 3289. ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-21702-5
LIU Y, Li J, Feng J, Liu Q, Nan F, Xie S. 2019. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae: microalgae-based real aquaculture wastewater treatment. Journal of Chemical Technology and Biotechnology. 94(3): 900-910. ISSN: 1097-4660. https://doi.org/10.1002/jctb.5837
LOVERA KPZ, Brito LO, Arana LAV, Galvez AO, Cárdenas JMV. 2018. Cultivo de alevinos de tilapia em sistema de bioflocossob diferentes relações carbono/nitrogênio. Boletim do Instituto de Pesca. 43(3): 399-407. ISSN: 1678-2305.
https://doi.org/10.20950/1678-2305.2017v43n3p399
MARA D, Mills S, Pearson H, Alabaster G. 1992. Waste stabilization ponds, a viable alternative for small community treatment systems. Water and Environment Journal. 6:72–78. ISSN: 1747-6593. https://doi.org/10.1111/j.1747-6593.1992.tb00740.x
MARTÍNEZ C, Martínez P, López E, Campaña T, Miranda B, Ballester E, Porchas C, Martínez-Córdova L. 2012. Avances en nutrición Acuícola: Memorias del X Simposio Internacional de Alimento natural en acuacultura: Universidad Autónoma de Nuevo León, Monterrey, México. Pp. 668-699.
MONROY-DOSTA M, Lara-Andrade D, Castro-Mejía J, Castro-Mejía G, Coelho-Emerenciano G. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biología marina y oceanografía. 48(3): 511-520. ISSN: 0718-1957. https://doi.org/10.4067/S0718-19572013000300009
MOSQUERA-CORRAL A, Campos F, Méndez R. 2005. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry. 40:3109-3118. ISSN: 1359-5113.
https://doi.org/10.1016/j.procbio.2005.03.042
NOGA EJ. 2010. Fish Disease Diagnosis and Treatment. Second edition. Pp. 257-285. Wiley-Blackwe. https://books.google.es/books?id=K5HDwAAQBAJ&lpg=PR9&ots=l_1MSAcYx8&dq=Fish%20Disease%20Diagnosis%20and%20Treatment&lr&hl=es&pg=PP1#v=onepage&q=Fish%20Disease%20Diagnosis%20and%20Treatment&f=false
OCHOA CDC, Montoya RA. 2010. Consorcios microbianos: una metáfora biológica aplicada a la asociatividad empresarial en cadenas productivas agropecuarias. Bogotá, CO. Revista Facultad de Ciencias Económicas: Investigación y Reflexión. 18(2): 60. ISSN: 0121-6805. https://www.redalyc.org/articulo.oa?id=90920053003
PANIGRAHI A, Saranya C, Sundaram M, Kannan SV, Das R, Kumar S, Otta K. 2018. Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish and shellfish immunology. 81: 329-337. ISSN: 1050-4648. https://doi.org/10.1016/j.fsi.2018.07.035
PARADA E, Peredo S, Cárdenas S, Valdebenito I, Peredo M. 2008. Diplodon chilensis gray, 1828 (bivalvia: hyriidae) a potential residual waters depurator on inland water salmonid fish-farms: a laboratory scale study. Gayana (Concepción). 72(1): 68-78. ISSN 0717-652X. https://doi.org/10.4067/S0717-65382008000100009
PÉREZ-FUENTES A, Hernández-Vergara P, Pérez-Rostro I, Fogel I. 2016. C: N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture. 452:247-251. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.11.010
PIEDRAHITA H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. 226(1-4):35-44. ISSN: 0044-8486. https://doi.org/10.1016/S0044-8486(03)00465-4
ROJAS-RODRÍGUEZ IS, Salazar-Solano V. 2018. La acuicultura frente a los impactos de la actividad agrícola en la calidad de los servicios ambientales de la cuenca del río mayo. Una propuesta para su abordaje desde la economía ecológica. Estudios sociales (Hermosillo, Sonora). 28(51). ISSN: 0188-4557. https://doi.org/10.24836/es.v28i51.507
SERRA P, Gaona A, Furtado S, Poersch H, Wasielesky W. 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture international. 23(6):1325-1339. ISSN: 1573-143X. https://doi.org/10.1007/s10499-015-9887-6
SFEZ S, Van Den Hende S, Taelman E, De Meester S, Dewulf J. 2015. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: from up-scaling to system integration. Bioresource Technology. 190:321-31. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2015.04.088
SIGEE DC. 2005. Freshwater microbiology: Biodiversity and dynamic interactions of microorganisms in the aquatic environment. John Wiley & Sons Ltd. Pp. 544. ISBN: 0471485284. https://doi.org/10.1002/0470011254
SILVA L, Falcon R, Pessôa C, Correia S. 2017. Carbon sources and C: N ratios on water quality for Nile tilapia farming in biofloc system. Revista Caatinga. 30(4): 1017-1027. ISSN: 0100-316X. https://doi.org/10.1590/1983-21252017v30n423rc
U.S. EPA (Environmental Protection Agency). Exposure Factors Handbook0. 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington. DC. EPA/600/R-09/052F. 2011.
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
VAN DEN HENDE S, Beelen V, Bore G, Boon N, Vervaeren H. 2014. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresource Technology. 159:342-54. ISSN: 0960-8524.
https://doi.org/10.1016/j.biortech.2014.02.113
VAN DEN HENDE S, Claessens L, De Muylder E, Boon N, Vervaeren H. 2016. Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquaculture Research. 47(4):1075-89. ISSN: 1365-2109. https://doi.org/10.1111/are.12564
WANG G, Yu E, Xie J, Yu D, Li Z, Luo W Zheng Z. 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture. 443: 98-104. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.03.015
WHO (World Health Organization). 2006. Guidelines for drinking-water quality. Vol. 1. Recommendations: addendum, 3rd ed. World Health Organization. ISBN: 9241546743. https://apps.who.int/iris/handle/10665/43242
WIK E, Lindén T, Wramner I. 2009. Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture. 287(3-4): 361-370. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2008.10.056
XU WJ, Morris TC, Samocha TM. 2015. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 453: 169-175. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2015.11.021
ZHU M, Deng L, Ruan J, Guo S, Shi M, Shen Z. 2015. Biological de-nitrification using poly (butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresour. Technol. 192: 603-610. ISSN: 0960-8524. https://doi.org/10.1016/j.biortech.2015.06.021