Genotypic frequency of the C313Y mutation in the GDF8 gene in Piedmontese cattle in Mexico

Authors

Keywords:

myostatin, PCR, double muscled

Abstract

Myostatin is a molecule responsible for negatively regulating muscle growth. Polymorphisms have been identified in the GDF8 gene that generate less functional variants that promote muscle hyperplasia. In the Piemontese cattle breed, the mutation is caused by a guanine to adenine transition at position 938 of exon 3 of the gene, which generates a substitution of the amino acid cysteine ​​for tyrosine at position 313 of the translated protein (C313Y). The objective of the present study was to estimate the genotypic and gene frequencies of the C313Y mutation of the GDF8 gene in Piedmontese cattle in Mexico using the PCR-RFLP method. For this study, 166 Piedmontese cattle belonging to herds located in the state of Jalisco were genotyped. The genotypic frequencies were 0.976 and 0.024 for the homozygous mutant and heterozygous genotypes, respectively. No individuals with the wild homozygous genotype were found. The allelic frequency of the mutant allele was 0.988, which confirms the high frequency of the mutation in this breed. To date, this is the first report where the frequency of the C313Y mutation is preliminarily described in populations of Piemontese cattle in Mexico.

http://dx.doi.org/10.21929/abavet2024.16       

e2024-13.

 https://www.youtube.com/watch?v=hXFQ4VvupXk

References

AIELLO D, Patel K, Lasagna E. 2018. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Animal Genetics. 49(6):505-519. ISSN: 1365-2052. https://doi.org/10.1111/age.12696

ALBERA A. 2005. Risultati dello studio sulla Miostatina. Razza Piemontese. Associazione Nazionale Allevatori Bovini di Razza Piemontese. 36(1):3-4.

BERRY C, Thomas M, Langley B, Sharma M, Kambadur R. 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal Physiology Cell Physiology. 283(1):135-141. ISSN:0363-6143. https://doi.org/10.1152/ajpcell.00458.2001

BI Y, He L, Feng B, Lan X, Song X, Qu L, Pan C. 2021. A 5-bp mutation within MSTN/GDF8 gene was significantly associated with growth traits in Inner Mongolia White Cashmere goats. Animal Biotechnology. 32(5):610-615. ISSN:1532-2378.

https://doi.org/10.1080/10495398.2020.1736088

BONGIONI G, Pozzi A, Galli A. 2003. Genotyping of the Double-Muscling Locus (mh) in Piemontese cattle. Book of Abstract of the 54th Annual Meeting of the European Association for Animal Production. Roma, Italia. Pp. 96.

BONGIORNI S, Valentini A, Chillemi G. 2016. Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the "Double Muscle" Phenotype in Piedmontese Cattle. Frontiers in Genetics. 7:14. ISSN:1664-8021. https://doi.org/10.3389/fgene.2016.00014

DI STASIO L, Rolando A. 2005. A PCR-RFLP method for genotyping the myostatin locus in Piemontese cattle. Animal Genetics. 36(6):521. ISSN:1365-2052.

https://doi.org/10.1111/j.1365-2052.2005.01356.x

FRANÇOIS L, Jäderkvist FK, Eriksson S, Andersson LS, Tesfayonas YG, Viluma A, Imsland F, Buys N, Mikko S, Lindgren G, Velie BD. 2016. Conformation traits and gaits in the Icelandic horse are associated with genetic variants in Myostatin (MSTN). Journal of Heredity. 107(5):431-437. ISSN:1465-7333. https://doi.org/10.1093/jhered/esw031

GAINA CD, Amalo FA. 2022. Genetic polymorphism of myostatin gene in Sumba Ongole (Bos indicus) cattle and its association with growth traits. Journal of Advanced Veterinary and Animal Research. 9(4):565-572. ISSN:2311-7710.

http://doi.org/10.5455/javar.2022.i625

GU H, Cao Y, Qiu B, Zhou Z, Deng R, Chen Z, Li R, Li X, Wei Q, Xia X, Yong W. 2016. Establishment and phenotypic analysis of an Mstn knockout rat. Biochemical and Biophysical Research Communications. 477(1):115-122. ISSN:1090-2104.

https://doi.org/10.1016/j.bbrc.2016.06.030

GROCHOWSKA E, Borys B, Lisiak D, Mroczkowski S. 2019. Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Science. 151:4-17. ISSN:1873-4138.

https://doi.org/10.1016/j.meatsci.2018.12.010

HALES KE, Tait JRG, Lindholm-Perry AK, Cushman RA, Freetly HC, Brown-Brandl TM, Bennett GL. 2020. Effects of the F94L Limousin associated myostatin gene marker on metabolic index in growing beef heifers. Applied Animal Science. 36(6):851-856. ISSN: 2590-2865. https://doi.org/10.15232/aas.2020-02046

HARUNA IL, Ekegbu UJ, Ullah F, Amirpour-Najafabadi H, Zhou H, Hickford JG. 2020. Genetic variations and haplotypic diversity in the Myostatin gene of New Zealand cattle breeds. Gene. 740:e144400. ISSN:1879-0038.

https://doi.org/10.1016/j.gene.2020.144400

KAMBADUR R, Sharma M, Smith TP, Bass JJ. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research. 7(9):910-916. ISSN:1549-5469. https://doi.org/10.1101/gr.7.9.910

LI W, Li R, Wei Y, Meng X, Wang B, Zhang Z, Wu W, Liu H. 2020. Effect of MSTN mutation on growth and carcass performance in Duroc × Meishan hybrid population. Animals. 10(6):932. ISSN:2076-2615. https://doi.org/10.3390/ani10060932

MEYERMANS R, Janssens S, Coussé A, Gorssen W, Hubin X, Mayeres P, Veulemans W, Claerebout E, Charlier C, Buys N. 2022. Myostatin mutation causing double muscling could affect increased psoroptic mange sensitivity in dual purpose Belgian Blue cattle. Animal. 16(3):100460. ISSN:1751-732X.

https://doi.org/10.1016/j.animal.2022.100460

MOIOLI B, Napolitano F, Catillo G. 2004. Genetic diversity between Piedmontese, Maremmana, and Podolica cattle breeds. Journal of Heredity. 95(3):250-256. ISSN: 0022-1503. https://doi.org/10.1093/jhered/esh032

NEI M. 1987. Molecular evolutionary genetics. New York Chichester, West Sussex: Columbia University Press. Pp. 327. ISBN: 9780231886710. https://doi.org/10.7312/nei-92038

NISZTUK S, Ślaska B, Zięba G, Rozempolska-Rucińska I. 2018. Association of MSTN gene polymorphism (C354T) with performance traits in raccoon dogs. Canadian Journal of Animal Science. 98(2):341-346. ISSN:1918-1825. https://doi.org/10.1139/cjas-2017-0070

PIRA E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. 2021. Polymorphisms at myostatin gene (MSTN) and the associations with sport performances in Anglo-Arabian racehorses. Animals. 11(4):964. ISSN:2076-2615.

https://doi.org/10.3390/ani11040964

POZZI A, Bongioni G, Galli A. 2009. Comparison of three PCR-based methods to detect a Piedmontese cattle point mutation in the Myostatin gene. Animal. 3(6):773-778. ISSN: 1751-7311. https://doi.org/10.1017/S1751731109004121

SAUNDERS MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW. 2006. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. The American Journal of Human Genetics. 79(6):1089-1097. ISSN:1537-6605.

https://doi.org/10.1086/509707

SCHUELKE M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine. 350(26):2682-2688. ISSN:1533-4406. https://doi.org/10.1056/NEJMoa040933

WAKCHAURE R, Ganguly S, Praveen P, Kumar A, Sharma S, Mahajan T. 2015. Marker assisted selection (MAS) in animal breeding: a review. Journal of Drug Metabolism and Toxicology. 6(5): e127. ISSN:2157-7609. https://doi.org/10.4172/2157-7609.1000e127

WHEELER TL, Shackelford SD, Casas E, Cundiff LV, Koohmaraie M. 2001. The effects of Piedmontese inheritance and myostatin genotype on the palatability of longissimus thoracis, gluteus medius, semimembranosus, and biceps femoris. Journal of Animal Science. 79(12):3069-3074. ISSN: 0021-8812. https://doi.org/10.2527/2001.79123069x

Published

2024-12-09

Issue

Section

Original Articles

Most read articles by the same author(s)