Salix babylonica a source of active compounds for the treatment of inflammatory diseases in animals
Keywords:
Salix babylonica, anti-inflamammatory effect, neutrophilsAbstract
The wellbeing of terrestrial animals describes society’s expectations for the conditions animals should experience when under human control. These principles include that animals must be free from pain, injury and disease. Inflammation is a host’s defensive mechanism against bacterial or viral infection and physical or chemical stimulus to the host. Metabolites from plants are an efficient alternative for treatment of inflammatory diseases. The purpose of this research was to evaluate the anti-inflammatory capacity of a hydro-alcoholic extract from Salix babylonica leaves (HESB) employing the auricular edema induced by the TPA model in mice. The HESB showed good anti-inflammatory activity without significant difference from the reference drug, indomethacin. For this reason, a bipartition of HESB was conducted, obtaining an aqueous fraction (AFSB) with slight activity (30.64 ± 3.03 %) and an organic fraction (EAFSB), which showed the best anti-inflammatory effect (67.08 ± 7.15 %). Previously, we identified anti-inflammatory flavonoids luteolin and luteoloside as the major components of EAFSB. In addition, histopathological analysis showed that mouse ears treated with Salix babylonica suppressed neutrophil infiltration into the inflammation site. These results support the ethno-medical use of this plant and evidenced that Salix babylonica’s applicability and value as an anti-inflammatory treatment for animals.
e2021-32
http://dx.doi.org/10.21929/abavet2023.9
https://www.youtube.com/watch?v=dJBhroMsr9E
References
ABDEL WAHAB G, Sallam A, Elgaml A, Lahloub MF, Afifi MS. 2018. Antioxidant and antimicrobial activities of Salix babylonica extracts. World Journal of Pharmaceutical Sciences. 6(4):1–6. ISSN: 2321-3086.
https://www.wjpsonline.org/admin/uploads/Z3D48w.pdf
AHMED A, Shah W, Akbar S, Kumar D, Kumar V, Younis M. 2011. In-vitro anti inflammatory activity of Salix caprea linn. (goat willow) by HRBC membrane stabilization method. Journal of Pharmacy Research. 4(4):1067–1068. ISSN: 0974-6943. http://jprsolutions.info/newfiles/journal-file-56d274fdc5d1e9.78679338.pdf
AZAB A, Nassar A, Azab AN. 2016. Anti-inflammatory activity of natural products. Molecules. 21(10):1–19. ISSN:1420-3049. https://doi.org/10.3390/molecules21101321
AZIZ N, Kim MY, Cho JY. 2018. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. Journal of Ethnopharmacology. 225 (May): 342–358. ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2018.05.019
BROOM D. 2011. Animal Welfare: Concepts, Study Methods and Indicators. Revista Colombiana de Ciencias Pecuarias. 24(3):306–321. ISSN: 2256-2958. https://revistas.udea.edu.co/index.php/rccp/article/view/324688/20782027
CASTLE K, Gillin C, Hernandez S, Justice-Allen A, Lamberski N, Nichols M, Wolff P. 2016. Advances in animal welfare for free-living animals. Journal of Wildlife Diseases. 52(2): S4–S13. ISSN: 0090-3558. https://doi.org/10.7589/52.2S.S4
DRUMMOND EM, Harbourne N, Marete E, Martyn D, Jacquier JC, O’Riordan D, Gibney ER. 2013. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from Chamomile, Meadowsweet and Willow Bark. Phytotherapy Research. 27(4): 588–594. ISSN: 1099-1573. https://doi.org/10.1002/ptr.4753
GONZÁLEZ-ALAMILLA EN, Gonzalez-Cortazar M, Valladares-Carranza B, Rivas-Jacobo MA, Herrera-Corredor CA, Ojeda-Ramírez D, Zaragoza-Bastida A, Rivero-Perez, N. 2019. Chemical Constituents of Salix Babylonica L. and Their Antibacterial Activity Against Gram-Positive and Gram-Negative Animal Bacteria. Molecules. 24 (16):2992. ISSN:1420-3049. https://doi.org/10.3390/molecules24162992
GUTIÉRREZ SD, Kuri SA, Martín-Herrera D. 2017. The bioguided fractionation and pharmacological activity of an endemic Salix canariensis species. Acta Pharmaceutica. 67(2):265–273. ISSN: 1846-9558. https://doi.org/10.1515/acph-2017-0012
GYAWALI R, Bhattarai P, Dhakal S, Jha B, Sharma S, Poudel PN. 2013. Analgesic and anti-inflammatory properties of Salix alba Linn and Calotropis procera (Aiton) Dryand. International Journal of Pharmaceutical & Biological Archives. 4(5):873–877. ISSN: 0976-3333. https://www.ijpba.info/ijpba/index.php/ijpba/article/view/1129
HERNÁNDEZ-VALLE E, Herrera-Ruiz M, Salgado GR, Zamilpa A, Ocampo MLA, Aparicio AJ, Tortoriello J, Jiménez-Ferrer E. 2014. Anti-inflammatory effect of 3-O-[(6’-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules. 19 (10): 15624–15637. ISSN: 1420-3049.
https://doi.org/10.3390/molecules191015624
KUMAWAT R, Sharma S, Vasudeva N, Kumar S. 2012. In vivo anti-inflamatory potential of various extracts of Sida tiagii Bhandari. Asian Pacific Journal of Tropical Biomedicine. 2(2SUPPL.):S947–S952. ISSN: 2221-1691. https://doi.org/10.1016/S2221-1691(12)60342-6
LAUDATO M, Capasso R. 2013. Useful plants for animal therapy. OA Alternative Medicine. 1 (1):1–6. ISSN: 2052-7845. https://doi.org/10.13172/2052-7845-1-1-327
LI L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X, Liang G. 2019. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-ΚB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 5:152774. ISSN: 0944-7113. https://doi.org/10.1016/j.phymed.2018.11.034
MATHEWS K, Kronen PW, Lascelles D, Nolan A, Robertson S, Steagall PV, Wright B, Yamashita K. 2014. Guidelines for recognition, assessment and treatment of pain. Journal of Small Animal Practice. 6(3):164–173. ISSN: 224510.
https://doi.org/10.1111/jsap.12200
MAYER M, Vogl CR, Amorena M, Hamburger M, Walkenhorst M. 2014. Treatment of organic livestock with medicinal plants: a systematic review of European ethnoveterinary research. Forschende Komplementärmedizin = Research in complementary medicine. 21 (6): 375–386. ISSN: 1661-4127. https://doi.org/10.1159/000370216
MENDES DAGB, Soley B da S, Prudente A da S, Sponchiado G, Ferreira BGA, dos Santos MC, de Andrade ASM, Amorim C de M, Bresolin TMB, Meyre-Silva C.; et al. 2016. Hydroalcoholic extract of Sapium glandulatum (Vell.) Pax displays potent anti-inflammatory activities through a glucocorticoid receptor-dependent pathway. Phytomedicine. 23(13):1610–1620. ISSN: 0944-7113.
https://doi.org/10.1016/j.phymed.2016.10.003
MIARA MD, Bendif H, Ouabed A, Rebbas K, Ait Hammou M, Amirat M, Greene A, Teixidor-Toneu I. 2019. Ethnoveterinary remedies used in the Algerian steppe: exploring the relationship with traditional human herbal medicine. Journal of Ethnopharmacology. 44(August):112164. ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2019.112164
OIE (World Organization for Animal Health). Animal welfare. https://www.oie.int/en/animal-welfare
PROPHET EB, Mills B, Arrington J, Sobón L. 1995. Métodos Histotecnológicos. Washington, DC, USA: Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América, Washington DC, Registro de Patología de los Estados Unidos de América (ARP) e Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América (AFIP). Pp. 280. ISBN: 1881041212 9781881041214.
RIVERO-PEREZ N, Ayala-Martinez M, Zepeda-Bastida A, Meneses-Mayo M, Ojeda-Ramirez D. 2016. Anti-inflammatory effect of aqueous extracts of spent Pleurotus ostreatus substrates in mouse ears treated with 12-O-tetradecanoylphorbol-13-acetate. Indian Journal of Pharmacology. 48 (2):141–144. ISSN: 0253-7613. https://doi.org/10.4103/0253-7613.178826
SAS INSTITUTE. 2006. Statistical Analysis Software SAS/STAT®. Ver 9.0, Cary, N.C., USA: SAS Institute Inc., ISBN: 978-1-60764-599-3.
SHARMA S, Sahu D, Das HR, Sharma D. 2011. Amelioration of collagen-induced arthritis by Salix nigra bark extract via suppression of pro-inflammatory cytokines and oxidative stress. Food and Chemical Toxicology. 49(12):3395–3406. ISSN: 0278-6915. https://doi.org/10.1016/j.fct.2011.08.013
SILVA JB da, Mendes R de F, Tomasco V, Pinto N de CC, de Oliveira LG, Rodrigues M N, Aragão DM de O, Aguiar JAK de, Alves MS, Castañon MCNM.; et al. 2017. New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata baker. Journal of Ethnopharmacology. 198:399–406. ISSN: 0378-8741.
https://doi.org/10.1016/j.jep.2017.01.039
STARLIN T, Saravana Prabha P, Thayakumar BKA, Gopalakrishnan VK. 2019. Screening and GC-MS profiling of ethanolic extract of Tylophora pauciflora. Bioinformation. 15 (6):425–429. ISSN: 0973-2063. https://doi.org/10.6026/97320630015425
VERMA RK. 2014. An ethnobotanical study of plants used for the treatment of livestock diseases in Tikamgarh district of Bundelkhand, Central India. Asian Pacific Journal of Tropical Biomedicine. 4(Supp 1): S460–S467. ISSN: 2221-1691.
https://doi.org/10.12980/APJTB.4.2014C1067
WAIZEL-BUCAY J. 2011. Plantas y compuestos importantes para la medicina: los sauces, los salicilatos y la aspirina. Revista de Fitoterapia. 11 (1): 61–75. ISSN: 1576-0952. https://www.fitoterapia.net/php/descargar_documento.php?id=4456&doc_r=sn&num_volumen=28&secc_volumen=5961
WEBB LE, Veenhoven R, Harfeld JL, Jensen MB. 2019. What Is Animal Happiness? Annals of the New York Academy of Sciences. 1438(1):62–76. ISSN: 1749-6632. https://doi.org/10.1111/nyas.13983
ZHANG BC, Li Z, Xu W, Xiang CH, Ma YF. 2018. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. American Journal of Translational Research. 10 (1):265–273. ISSN: 1943-8141. http://www.ajtr.org/files/ajtr0067047.pdf