Frecuencia genotípica de la mutación C313Y del gen GDF8 en ganado Piemontese en México
Palabras clave:
miostatina, PCR-RFLP, doble musculaturaResumen
La miostatina es una molécula encargada de regular negativamente el crecimiento muscular; en el gen GDF8 se han identificado polimorfismos que generan variantes menos funcionales que promueven hiperplasia muscular. En la raza de ganado Piemontese la mutación es ocasionada por una transición de guanina por adenina en la posición 938 del exón 3 del gen, lo que genera una sustitución del aminoácido cisteína por tirosina en la posición 313 de la proteína traducida (C313Y). El objetivo del presente estudio fue estimar la frecuencia genotípica y génica de la mutación C313Y del gen GDF8 en ganado Piemontese de México mediante la técnica de PCR-RFLP. Para este estudio se genotificaron 166 bovinos raza Piemontese pertenecientes a unidades de producción ubicadas en el estado de Jalisco. Las frecuencias genotípicas encontradas fueron 0.976 y 0.024 para los genotipos homocigótico mutante y heterocigótico, respectivamente. No se encontraron individuos con el genotipo homocigótico silvestre. La frecuencia génica del alelo mutante fue 0.988, lo cual confirma la alta frecuencia de la mutación en los ejemplares de esta raza. Este es el primer reporte donde se describe de manera preliminar la frecuencia de la mutación C313Y en poblaciones de ganado Piemontese en México.
http://dx.doi.org/10.21929/abavet2024.16
e2024-13.
Citas
AIELLO D, Patel K, Lasagna E. 2018. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Animal Genetics. 49(6):505-519. ISSN: 1365-2052. https://doi.org/10.1111/age.12696
ALBERA A. 2005. Risultati dello studio sulla Miostatina. Razza Piemontese. Associazione Nazionale Allevatori Bovini di Razza Piemontese. 36(1):3-4.
BERRY C, Thomas M, Langley B, Sharma M, Kambadur R. 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal Physiology Cell Physiology. 283(1):135-141. ISSN:0363-6143. https://doi.org/10.1152/ajpcell.00458.2001
BI Y, He L, Feng B, Lan X, Song X, Qu L, Pan C. 2021. A 5-bp mutation within MSTN/GDF8 gene was significantly associated with growth traits in Inner Mongolia White Cashmere goats. Animal Biotechnology. 32(5):610-615. ISSN:1532-2378.
https://doi.org/10.1080/10495398.2020.1736088
BONGIONI G, Pozzi A, Galli A. 2003. Genotyping of the Double-Muscling Locus (mh) in Piemontese cattle. Book of Abstract of the 54th Annual Meeting of the European Association for Animal Production. Roma, Italia. Pp. 96.
BONGIORNI S, Valentini A, Chillemi G. 2016. Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the "Double Muscle" Phenotype in Piedmontese Cattle. Frontiers in Genetics. 7:14. ISSN:1664-8021. https://doi.org/10.3389/fgene.2016.00014
DI STASIO L, Rolando A. 2005. A PCR-RFLP method for genotyping the myostatin locus in Piemontese cattle. Animal Genetics. 36(6):521. ISSN:1365-2052.
https://doi.org/10.1111/j.1365-2052.2005.01356.x
FRANÇOIS L, Jäderkvist FK, Eriksson S, Andersson LS, Tesfayonas YG, Viluma A, Imsland F, Buys N, Mikko S, Lindgren G, Velie BD. 2016. Conformation traits and gaits in the Icelandic horse are associated with genetic variants in Myostatin (MSTN). Journal of Heredity. 107(5):431-437. ISSN:1465-7333. https://doi.org/10.1093/jhered/esw031
GAINA CD, Amalo FA. 2022. Genetic polymorphism of myostatin gene in Sumba Ongole (Bos indicus) cattle and its association with growth traits. Journal of Advanced Veterinary and Animal Research. 9(4):565-572. ISSN:2311-7710.
http://doi.org/10.5455/javar.2022.i625
GU H, Cao Y, Qiu B, Zhou Z, Deng R, Chen Z, Li R, Li X, Wei Q, Xia X, Yong W. 2016. Establishment and phenotypic analysis of an Mstn knockout rat. Biochemical and Biophysical Research Communications. 477(1):115-122. ISSN:1090-2104.
https://doi.org/10.1016/j.bbrc.2016.06.030
GROCHOWSKA E, Borys B, Lisiak D, Mroczkowski S. 2019. Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Science. 151:4-17. ISSN:1873-4138.
https://doi.org/10.1016/j.meatsci.2018.12.010
HALES KE, Tait JRG, Lindholm-Perry AK, Cushman RA, Freetly HC, Brown-Brandl TM, Bennett GL. 2020. Effects of the F94L Limousin associated myostatin gene marker on metabolic index in growing beef heifers. Applied Animal Science. 36(6):851-856. ISSN: 2590-2865. https://doi.org/10.15232/aas.2020-02046
HARUNA IL, Ekegbu UJ, Ullah F, Amirpour-Najafabadi H, Zhou H, Hickford JG. 2020. Genetic variations and haplotypic diversity in the Myostatin gene of New Zealand cattle breeds. Gene. 740:e144400. ISSN:1879-0038.
https://doi.org/10.1016/j.gene.2020.144400
KAMBADUR R, Sharma M, Smith TP, Bass JJ. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research. 7(9):910-916. ISSN:1549-5469. https://doi.org/10.1101/gr.7.9.910
LI W, Li R, Wei Y, Meng X, Wang B, Zhang Z, Wu W, Liu H. 2020. Effect of MSTN mutation on growth and carcass performance in Duroc × Meishan hybrid population. Animals. 10(6):932. ISSN:2076-2615. https://doi.org/10.3390/ani10060932
MEYERMANS R, Janssens S, Coussé A, Gorssen W, Hubin X, Mayeres P, Veulemans W, Claerebout E, Charlier C, Buys N. 2022. Myostatin mutation causing double muscling could affect increased psoroptic mange sensitivity in dual purpose Belgian Blue cattle. Animal. 16(3):100460. ISSN:1751-732X.
https://doi.org/10.1016/j.animal.2022.100460
MOIOLI B, Napolitano F, Catillo G. 2004. Genetic diversity between Piedmontese, Maremmana, and Podolica cattle breeds. Journal of Heredity. 95(3):250-256. ISSN: 0022-1503. https://doi.org/10.1093/jhered/esh032
NEI M. 1987. Molecular evolutionary genetics. New York Chichester, West Sussex: Columbia University Press. Pp. 327. ISBN: 9780231886710. https://doi.org/10.7312/nei-92038
NISZTUK S, Ślaska B, Zięba G, Rozempolska-Rucińska I. 2018. Association of MSTN gene polymorphism (C354T) with performance traits in raccoon dogs. Canadian Journal of Animal Science. 98(2):341-346. ISSN:1918-1825. https://doi.org/10.1139/cjas-2017-0070
PIRA E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. 2021. Polymorphisms at myostatin gene (MSTN) and the associations with sport performances in Anglo-Arabian racehorses. Animals. 11(4):964. ISSN:2076-2615.
https://doi.org/10.3390/ani11040964
POZZI A, Bongioni G, Galli A. 2009. Comparison of three PCR-based methods to detect a Piedmontese cattle point mutation in the Myostatin gene. Animal. 3(6):773-778. ISSN: 1751-7311. https://doi.org/10.1017/S1751731109004121
SAUNDERS MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW. 2006. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. The American Journal of Human Genetics. 79(6):1089-1097. ISSN:1537-6605.
https://doi.org/10.1086/509707
SCHUELKE M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine. 350(26):2682-2688. ISSN:1533-4406. https://doi.org/10.1056/NEJMoa040933
WAKCHAURE R, Ganguly S, Praveen P, Kumar A, Sharma S, Mahajan T. 2015. Marker assisted selection (MAS) in animal breeding: a review. Journal of Drug Metabolism and Toxicology. 6(5): e127. ISSN:2157-7609. https://doi.org/10.4172/2157-7609.1000e127
WHEELER TL, Shackelford SD, Casas E, Cundiff LV, Koohmaraie M. 2001. The effects of Piedmontese inheritance and myostatin genotype on the palatability of longissimus thoracis, gluteus medius, semimembranosus, and biceps femoris. Journal of Animal Science. 79(12):3069-3074. ISSN: 0021-8812. https://doi.org/10.2527/2001.79123069x