Efecto descapacitante de proteínas oviductales en espermatozoides de gallo in vitro

Autores/as

Palabras clave:

semen, adenosin trifosfato, glutation reducido, malondialdehido, oxidación

Resumen

En las aves, no se ha descrito totalmente el proceso de maduración espermática. El objetivo del estudio fue determinar parámetros in vitro, del efecto descapacitante de las proteínas oviductales, en espermatozoides de gallo. Alícuotas con espermatozoides, fueron incubadas in vitro para inducir estados metabólicos de capacitación, descapacitación y reacción acrosomal para determinar porcentajes de espermatozoides vivos, su movilidad y concentraciones de Malondialdehído, Glutation reducido y Adenosin tri fosfato, como parámetros del estado metabólico de los espermatozoides. Los resultados mostraron porcentajes de movilidad y espermatozoides vivos en semen fresco y capacitado similares (P>0.05), pero mayores (P<0.05) a los determinados en espermatozoides con reacción acrosomal. Los nmol/ml de MDA en semen fresco (1.59) fue mayor (P<0.005) que en semen capacitado (1.05), con reacción acrosomal (1.07) y en semen descapacitado (1.05). Los nmol/ml de GSG fueron similares (P>0.05) en semen fresco (72.6) y capacitado (62.04), y entre semen con reacción acrosomal (99.09) y descapacitado (86.07). La mayor concentración de ATP fue en semen capacitado con 69.9 µmol/ml, con concentraciones similares (P<0.05) en semen fresco, con reacción acrosomal y descapacitados. Los parámetros determinados, demostraron que la fracción proteica de la unión útero-vaginal, in vitro produce descapacitación y mantiene la viabilidad espermática.

http://dx.doi.org/10.21929/abavet2023.13                    

 e2022-77

https://www.youtube.com/watch?v=0rYTQI3wmoU

 

Citas

ÁLVAREZ-RODRÍGUEZ M, Ntzouni M, Wright D, Khan KI, López-Béjar M, Martínez CA, Rodríguez-Martínez H. 2020. Chicken seminal fluid lacks CD9- and CD44-bearing extracellular vesicles. Reprod Domest Anim. 55(3):293-300. ISSN: 439-0531. https://doi.org/10.1111/rda.13617

ASANO A, Tajima A. 2017. Development and Preservation of Avian Sperm. Adv Exp Med Biol. 1001:59-73. ISSN: 2214-8019. https://doi.org/10.1007/978-981-10-3975-1_4

APPLEGATE TJ, Angel R. 2014. Nutrient requirements of poultry publication: History and need for an update. J Appl Poult Res. 23(3): 567-575. ISSN: 1056-6171. https://doi.org/10.3382/japr.2014-00980

ASHRAF S, Bhatti SA, Nawaz H, Khan MS. 2020. Assessment of dietary selenium sources in commercial male broiler breeders: effects on semen quality, antioxidant status and immune responses. Pak Vet J. 40(1): 13-18. ISSN 2074-7764.

http://www.pvj.com.pk/abstract/40_1/19-130.htm

BAKST M. 2010. Role of the oviduct in maintaining sustained fertility in hens. J Anim. 89(5): 1323-1329. ISNN: 1525-3163. https://doi.org/10.2527/jas.2010-3663

CAMARILLO R, Jiménez I, Guzmán A, Rosales A, Rodríguez F, Pérez-Rivero JJ, Herrera JA. 2019. Oviductal proteins effect in rooster spermatic cryopreservation. CryoLetters. 40(6): 352-356. ISSN: 0143-2044.

http://www.cryoletters.org/Abstracts/vol_40_6_2019.htm#352

DÁVILA PM, Martin M P, Tapia JA, Ortega F C, Balao C C, Peña FJ. 2015. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility. PLoS One. 10(9):e0138777. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0138777

FATTAH A, Sharafi M, Masoudi R, Shaverdi A, Esmaeili V. 2017. L-carnitina is a survival factor for chilled storage of rooster semen for a long time. Cryobiology. 74:13-18. ISSN: 1090-2392. https://doi.org/10.1016/j.cryobiol.2016.12.011

FERRAMOSCA A, Zara V. 2014. Bioenergetics of mammalian sperm capacitation. Biomed Res Int. 2014:902953. ISSN: 2314-6141. https://doi.org/10.1155/2014/902953

FISCHER DH, Failing SK, Meinecke‐Tillmann S, Wehrend A, Lierz M. 2020. Viability assessment of spermatozoa in large falcons (Falco spp.) using various staining protocols. Reprod Domestic Anim. 55(10):1383-1392.ISSN: 1439-0531.

https://doi.org/10.1111/rda.13785

GONZÁLEZ-SANTOS, Jorge A, Ávalos-Rodríguez, Alejandro, Martínez-García, José A, Rosales-Torres, Ana M, Herrera-Barragán, José A. 2019. Sperm morphophysiology in different sections of the rooster reproductive tract. Int J Morphol, 37(3): 861-866. ISSN: 0717-9502. https://dx.doi.org/10.4067/S0717-95022019000300861

HAMMER Ø, Harper DAT and Ryan PD. 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 4(1):1–9. ISSN: 1094-8074. https://palaeo-electronica.org/2001_1/past/past.pdf

ITO T, Yoshizaki N, Tokumoto T, Ono H, Yoshimura T, Tsukada A, Kansaku N, Sasanami T. 2011. Progesterone is a sperm-releasing factor from the sperm-storage tubules in birds. Endocrinology. 152(10):3952–3962. ISSN: 1945-7170. https://doi.org/10.1210/en.2011-0237

JABBAR A, Abbass W, Riaz A, Sattar A, Akram M. 2015. Effect of different concentrations of ascorbic acid on semen quality and hatchability of indigenous aseel chicken. J Anim Plant Sci. 25(5):1222-1226. ISSN: 1018-7081. http://www.thejaps.org.pk/docs/v-25-05/03.pdf

KU HK, Lim HM, Oh KH, Yang HJ, Jeong JS, Kim SK. 2013. Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models. Anal Biochem. 434(1):178-80. ISSN: 1096-0309. https://doi.org/10.1016/j.ab.2012.10.045

KURKOWSKA W, Bogacz A, Janiszewska M, Gabryś E, Tiszler M, Bellanti F, Kasperczyk S, Machoń-Grecka A, Dobrakowski M, Kasperczyk A. 2020. Oxidative stress is associated with reduced sperm motility in normal semen. Am J Mens Health. 14(5):1-8. ISSN: 1557-9891. https://doi.org/10.1177/1557988320939731

LEMOINE MS, Mignon-Grasteau I, Grasseau M, Magistrini E, Bleisbois E. 2011. Ability of chicken spermatozoa to undergo acrosome reaction after liquid storage or cryopreservation. Theriogenology. 75(1):122-130. ISSN: 1879-3231.

https://doi.org/10.1016/j.theriogenology.2010.07.017

LONG J, Conn T. 2012. Use of phosphosphatidylcholine to improve the function of turkey semen stored at 4°C for 24hours. Poult Sci. 91(8):1990-1996. ISSN: 1525-3171. https://doi.org/10.3382/ps.2011-02028

MASOUDI R, Sharafi M, Shahneh AZ, Khodaei-Motlagh M. 2019. Effects of reduced glutathione on the quality of rooster sperm during cryopreservation. Theriogenology. 1(128):149-155. ISSN: 1879-3231. https://doi.org/10.1016/j.theriogenology.2019.01.016

MATSUZAKI M, Sasanami T. 2022. Sperm Motility Regulation in Male and Female Bird Genital Tracts. J Poult Sci. 59(1):1-7. ISSN: 1346-7395.

https://doi.org/10.2141/jpsa.0200105

NAJAFI A, Daghigh KH, Hamishehkar H. 2021. Does alpha-lipoic acid-loaded nanostructured lipid carriers improve post-thawed sperm quality and ameliorate apoptosis-related genes of rooster sperm? Poult Sci. 100(1):357-365. ISSN: 1525-3171. https://doi.org/10.1016/j.psj.2020.10.007

NAKAMURA Y. Avian Biotechnology. 2017. Adv Exp Med Biol. 1001:187-214. ISSN: 2214-8019. https://doi.org/10.1007/978-981-10-3975-1_12

NGUYEN TMD, Seigneurin F, Froment P, Combarnous Y, Blesbois E. 2015. The 5’-AMP-

Activated Protein Kinase (AMPK) Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm. PLoS One. 10(7):e0134420. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0134420

NGUYEN QT, Wallner U, Schmicke M, Waberski D, Henning H. 2016. Energy metabolic state in hypothermically stored boar spermatozoa using a revised protocol for efficient ATP extraction. Biol Open. 5 (11):1743-1751. ISSN: 2046-6390.

https://doi.org/10.1242/bio.017954

OLUBOWALE S, Greyling JPC, De Witt FH, Hugo A, Raito MB. 2014. Effects of dietary lipid sources on the semen quality of hy-line silver-brown cockerels. J Anim Plant Sci. 24(4):991-997. ISSN: 1018-7081. http://www.thejaps.org.pk/docs/v-24-4/03.pdf

RESTREPO G, Varela E, Usuga A. 2016. Evaluación de la calidad espermática epididimal en hipopótamos Hippopotamus amphibius (Artiodactyla: hippopotamidae) ubicados en el magdalena medio, Colombia. Ac Zool Mex. 32(2):158-167. ISSN: 2448-8445. https://www.scielo.org.mx/pdf/azm/v32n2/0065-1737-azm-32-02-00158.pdf

ROMO S, López D, Ledesma N, Gutiérrez C, Quintana A, Rangel L. 2022. Comparación en la calidad de huevos obtenidos en un sistema de producción en corrales al aire libre y los producidos en un sistema de jaula. Rev Mex Cien Pec. 13(1):32-42. ISSN: 2448-6698. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/5300/4696

SAJJADI SH, Ahmadzadeh H, Goharshadi EK. 2019. Enhanced electrophoretic separation of proteins by tethered SiO2 nanoparticles in an SDS-polyacrylamide gel network. Analyst. 145(2):415-423. ISSN: 1364-5528.

https://pubs.rsc.org/en/content/articlelanding/2020/an/c9an01759c

SASANAMI TM. 2013. Sperm storage in the female reproductive tract in birds. J Reprod Dev. 59(4):334-8. ISSN: 1348-4400. https://doi.org/10.1262/jrd.2013-038

SEDAGHAT B, Hajjaran H, Sadjjadi FS, Heidari S, Sadjjadi SM. 2021. Proteomic 1089-8646 through optimizing protein extraction. BMC Res Notes. 14(1):22. ISSN: 1756-0500. https://doi.org/10.1186/s13104-020-05433-3

SETIAWAN R, Priyadarshana C, Miyazaki H, Tajima A, Asano A. 2021. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus). Anim Reprod Sci. 233:106843. 233. ISSN: 1873-2232.

https://doi.org/10.1016/j.anireprosci.2021.106843

ZHONG TY, Ling L, Feng Z, Zhen-He Z, Maxwell H, Ning Y, Zhuo-Cheng H. 2020. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics. 112(1):243-251. ISSN: 1089-8646.

https://doi.org/10.1016/j.ygeno.2019.02.003

Publicado

2023-06-24

Número

Sección

Artículos Originales

Artículos más leídos del mismo autor/a