Respuesta reproductiva en yeguas criollas tratadas con acetato de deslorelina

Jorge Lara-Castillo, José Herrera-Camacho, Alejandro Estrada-Coates, Miguel Bautista-Hernández, Benjamin Gómez-Ramos

Resumen

El efecto del acetato de deslorelina sobre la respuesta reproductiva fue evaluado en yeguas criollas en el Estado de Michoacán. Diez yeguas tratadas intramuscularmente y distribuidas en un Grupo control (GC; n=5) 1 ml de agua destilada como placebo y el grupo experimental (GD; n= 5) 1.5 mg del acetato de deslorelina. Cuando el folículo alcanzó los 35 mm de diámetro, las yeguas se trataron en función del grupo asignado. La actividad ovárica fue monitoreada cada 24 h, y se determinó la incidencia (%) de folículos hemorrágicos anovulatorios (HAFs), tasa de ovulación (%), crecimiento folicular por día (mm), diámetro folicular a la ovulación (mm), y tiempo a la ovulación (h). La incidencia de HAFs fue superior (X2=3.83) en el GC que en GD (25.58% vs. 5.8%, respectivamente). La tasa de ovulación fue superior (X2= 4.76) en GD que en GC (94.11% vs 74.41%, respectivamente). La administración de la hormona, no afecto (p>0.05) el crecimiento folicular por día ni el diámetro folicular, pero la ovulación se presentó (p<0.01) a las 39.45±2.95 h y 89.47±3.62 h en el GD y GC, respectivamente. El acetato de deslorelina redujo la incidencia de HAFs e incrementó la tasa de ovulación.
http://dx.doi.org/10.21929/abavet2021.43
https://www.youtube.com/watch?v=dnsmwSHMMZ8

Palabras clave

yeguas criollas; acetato de deslorelina; folículos hemorrágicos anovulatorios

Referencias

BASHIR ST, Gastal MO, Tazawa SP, Tarso SGS, Hales DB, Cuervo-Arango J, Baerwald AR, Gastal EL. 2016. The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu. Reproduction. 151 (3): 271-283.

https://doi.org/10.1530/REP-15-0457

BURDEN CA, McCue PM, Ferris RA. 2015. Effect of cloprostenol administration on interval to subsequent ovulation and anovulatory follicle formation in quarter horse mares. Journal of Equine Veterinary Science. 35(6): 531–535.

https://doi.org/10.1016/j.jevs.2015.02.011

CUERVO-ARANGO J, Martínez-Boví R. 2016. The role of PGE2 and PGF2a in follicle wall rupture and their implications in the development and treatment of luteinized unruptured follicles. Pferdeheilkunde Equine Medicine. 32(1):54-56.

https://doi.org/10.21836/pem20160110

CUERVO-ARANGO J, Newcombe J. 2012. Ultrasound characteristics of experimentally induced luteinized unruptured follicles (LUF) and naturally occurring hemorrhagic anovulatory follicles (HAF) in the mare. Theriogenology. 77(3): 514-524.

https://doi.org/10.1016/j.theriogenology.2011.08.026

CUERVO-ARANGO J, Newcombe JR. 2008. Repeatability of preovulatory follicular diameter and uterine edema pattern in two consecutive cycles in the mare and how they are influenced by ovulation inductors. Theriogenology. 69(8): 681-687.

https://doi.org/10.1016/j.theriogenology.2007.11.019

CUERVO-ARANGO J, Newcombe JR. 2010. Risk factors for the development of haemorrhagic anovulatory follicles in the mare. Reproduction in Domestic Animals. 45(7): 473-480. https://doi.org/10.1111/j.1439-0531.2008.01260.x

D’ OLIVEIRA SN, Canuto L, Segabinazzi LGTM, Dell´Aqua JJA, Papa P, Fonseca M, Ribeiro FADL, Papa F. 2019. Histrelin acetate-induced ovulation in Brazilian Northeastern jennies (Equus asinus) with different follicle diameters. Theriogenology. 136 (1):95-100. https://doi.org/10.1016/j.theriogenology.2019.06.037

DOLEZEL R, Ruzickova K, Maceckova G. 2012. Growth of the dominant follicle and endometrial folding after administration of hCG in mares during oestrus. Veterinarni Medicina. 57 (1):36-41. https://doi:10.17221/4970-VETMED

DONADEU F, Pedersen H. 2008. Follicle development in mares. Reproduction in Domestic Animals. 43(7): 224-231. https://doi.org/10.1111/j.1439-0531.2008.01166.x

DORDAS-PERPINYÀ M, Normandin L, Dhier T, Terris H, Cochard A, FrilleyC, Huiban F, Bruyas JF. 2020. Single injection of triptorelin or buserelin acetate in saline solution induces ovulation in mares the same as a single injection of hCG. Reproduction in Domestical Animals. 55(9):374-383. https://doi.org/10.1111/rda.13632

FINAN SA, Lamkinb EL, McKinnon AO. 2016. Comparative efficacy of BioRelease Deslorelin® injection for induction of ovulation in oestrus mares: a field study. Australian Veterinary Journal. 94(3):338-340. https://doi.org/10.1111/avj.12478

GERARD N, Robin E. 2019. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology. 130 (1) :163-176.

https://doi.org/10.1016/j.theriogenology.2019.03.007

GINTHER OJ, Beg MA. 2011. Hormone concentration changes temporally associated with the hour of transition from preluteolysis to luteolysis in mares. Animal Reproduction Science. 129(6): 67-72. https://doi.org/10.1016/j.anireprosci.2011.09.013

GINTHER OJ, Gastal EL, Gastal MO, Jacob JC, Beg MA. 2008. Induction of haemorrhagic anovulatory follicles in mares. Reproduction, Fertility and Development. 20(5): 947-954. https://doi.10.1071/rd08136

HENNEKE D, Potter G, Kreider J. 1984. Body condition during pregnancy and lactation and reproductive efficiency of mares. Theriogenology. 21(6):897-909.

https://doi.org/10.1016/0093-691x(84)90383-2

INEGI. 2009. Instituto Nacional de Estadística Geografía e Informática. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Tocumbo, Michoacán de Ocampo. Clave geoestadística 16095.

http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/16/16095.pdf

JACOB JC, Gastal EL, Gastal MO, Carvalho GR, Beg M A, Ginther O J. 2009. Temporal relationships and repeatability of follicle diameters and hormone concentrations within individuals in mares. Reproduction in Domestic Animals. 44(7): 92-99.

https://doi.org/10.1111/j.1439-0531.2007.01003.x

LEFRANC AC, Allen WR. 2003. Incidence and morphology of anovulatory haemorrhagic follicles in the mare. Pferdeheilkunde Equine Medicine. 19(6): 611-612.

https://doi.org/10.21836/pem20030607

LÓPEZ-PÉREZ LM, Zarco-Quintero L, Boeta-Acosta AM. 2010. Inducción de la actividad ovárica en yeguas criollas con un programa de fotoperiodo artificial en la latitud 19°9'N. Veterinaria México. 41(2): 89-100.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0301-50922010000200002&lng=es&tlng=es

MCCUE PM, Magee C, Gee EK. 2007. Comparison of compounded deslorelin and hCG for induction of ovulation in mares. Journal of Equine Veterinary Science. 27(3): 58- 61.

https://doi.org/10.1016/j.jevs.2006.12.003

MCCUE PM, Squires EL. 2002. Persistent anovulatory follicles in the mare. Theriogenology. 58(5): 541-543. https://doi.org/10.1016/S0093-691X(02)00769-0

MCCUE PM. 2007a. Ovarian abnormalities. In Current therapy in equine reproduction. Saunders Elsevier. USA. ISBN 13: 978-0-7216-0252-3. 13(5): 87-92.

https://doi.org/10.1016/B978-0-7216-0252-3.50017-5

MCCUE PM. 2007b. Ovulation failure. In Current therapy in equine reproduction. Saunders Elsevier. USA. ISBN 13: 978-0-7216-0252-3. 12(3): 83-86.

https://doi.org/10.1016/B978-0-7216-0252-3.50016-3

MEINECKE B, Gips H, Meinecke TS. 1987. Progestagen, androgen and estrogen levels in plasma and ovarian follicular fluid during the oestrous cycle of the mare. Animal Reproduction Science. 12(4):255-265. https://doi.org/10.1016/0378-4320(87)90097-2

MIKI W, Oniyama H, Takeda N, Kimura Y, Haneda S, Matsui M, Taya K, Nambo Y. 2016. Effects of a single use of the GnRH analog buserelin on the induction of ovulation and endocrine profiles in heavy draft mares. Journal of Equine Science. 27(4):149-156. https://doi.10.1294/jes.27.149

MOREL MCD, Newcombe JR, Swindlehurst JC. 2005. The effect of age on multiple ovulation rates, multiple pregnancy rates and embryonic vesicle diameter in the mare. Theriogenology. 63 (9): 2482-2493. https://doi.org/10.1016/j.theriogenology.2004.09.058

SATUÉ K, Gardon JC. 2020. Physiological and clinical aspects of the endocrinology of the estrous cycle and pregnancy in mares. In Animal Reproduction in Veterinary Medicine. Aral F, Payan-Carreira R, Quaresma M. Ed. IntechOpen, London, United Kingdom. ISBN: 978-1-83881-937-8. https://doi.org/10.5772/intechopen.90387

https://www.intechopen.com/chapters/70381

SCHAUER S, Guillaume D, Decourt C, Watson E, Briant C, Donadeu F. 2013. Effect of luteinizing hormone overstimulation on equine follicle maturation. Theriogenology. 79(3):409-416. https://doi.org/10.1016/j.theriogenology.2012.08.017

SMOK SC, Rojas RM. 2010. Follicular-stromal interaction in the mare ovary during the reproductive cycle. International Journal of Morphology. 28(3):697-701. http://dx.doi.org/10.4067/S0717-95022010000300007

SQUIRES E, Moran D, Farlin M, Jasko D, Keefe T, Meyers S, Figueiredo E, McCue P, Jochle W. 1994. Effect of dose of GnRH analog on ovulation in mares. Theriogenology. 41(3): 757-769. https://doi.org/10.1016/0093-691x(94)90185-l

WATSON E, Al-Zi’abi M. 2002. Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction. 20(7):227-234. https://doi.org/10.1530/rep.0.1240227

SAS. Statistical Analysis System. SAS Institute. 2012. JMP Statistics and Graphics Guide. Version 4.0. SAS Institute, Cary, NC. ISBN: 978-1-60764-599-3

http://www.sas.com/en_us/software/analytics/stat.html#

Enlaces refback

  • No hay ningún enlace refback.