Suplementação de aminoácidos funcionais em dietas de suínos e seu impacto no intestino

Autores

Palavras-chave:

aminoácidos sintéticos, proteína, suplementação

Resumo

O objetivo deste estudo foi analisar a importância da inclusão de aminoácidos funcionais (AA) na dieta de suínos em fase inicial de crescimento sobre a saúde intestinal, o desenvolvimento e o crescimento. Os AA funcionais são aqueles que participam e regulam as principais vias metabólicas para melhorar a saúde, a sobrevivência, o crescimento, o desenvolvimento, a lactação e a reprodução dos suínos em estágios fisiológicos específicos. Durante períodos de estresse e estágios fisiológicos críticos, os suínos têm uma necessidade nutricional maior de alguns AA [1-1,5 % de arginina, 1 % de glutamato, 0,8-2 % de glutamina, 0,5-1 % de prolina, 0,5-2 % de glicina, AA de cadeia ramificada (0,19-0,55 % de isoleucina, 0. 07-0,82 % de leucina e 0,27-0,57 % de valina), 0,4-0,6 % de treonina, 0,12 % de metionina e 0,2-0,4 % de triptofano] para otimizar o desempenho da produção, pois o aumento desses AA ajuda a manter a saúde intestinal e facilita o funcionamento normal do intestino. A aplicação do conceito de AA funcional na formulação de rações permite entender e valorizar que a inclusão extra representa uma opção para fortalecer o sistema imunológico e favorecer o desenvolvimento e o crescimento intestinal. Em conclusão, a adição de AA funcionais à dieta de suínos jovens promove a saúde intestinal, o desenvolvimento e o crescimento.

e2022-14

http://dx.doi.org/10.21929/abavet2023.7

https://www.youtube.com/watch?v=kBa8dPlSwZ0

Referências

BAUCHART-THEVRET C, Stoll B, Chacko S, Burrin DG. 2009. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. American Journal of Physiology-Endocrinology and Metabolism. 296(6):1239-1250. ISSN: 0193-1849. https://doi.org/10.1152/ajpendo.91021.2008

CHEN Y, Chen D, Tian G, He J, Mao X, Mao Q, Yu B. 2012. Dietary arginine supplementation alleviates immune challenge induced by Salmonella enterica serovar Choleraesuis bacterin potentially through the Toll-like receptor 4-myeloid differentiation factor 88 signalling pathway in weaned piglets. British Journal of Nutrition. 108(6):1069-1076. ISSN: 1475-2662. https://doi.org/10.1017/S0007114511006350

CHEN Y, Li D, Dai Z, Piao X, Wu Z, Wang B, Zhu Y, Zeng Z. 2014. L-methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids. 46(4):1131-1142. ISSN: 1438-2199.

https://doi.org/10.1007/s00726-014-1675-5

DAI ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY. 2012. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids. 43:233-244. ISSN: 1438-2199. https://doi.org/10.1007/s00726-011-1067-z

DUAN Y, Li F, Wang W, Guo Q, Wen C, Yin Y. 2017. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios. Oncotarget. 8(63):107011-107021. ISSN: 1949-2553. https://doi.org/10.18632/oncotarget.22205

DUAN Y, Tan B, Li J, Liao P, Huang B, Li F, Xia H, Liu Y, Yin Y. 2018. Optimal branched-chain amino acid ratio improves cell proliferation and protein metabolism of porcine enterocytesin in vivo and in vitro. Nutrition. 54: 173-181. ISSN: 2353-026X. https://doi.org/10.1016/j.nut.2018.03.057

FAN X, Li S, Wu Z, Dai Z, Li J, Wang X, Wu G. 2019. Glycine supplementation to breast-fed piglets attenuates post-weaning jejunal epithelial apoptosis: a functional role of CHOP. Amino Acids. 51:463-473. ISSN: 1438-2199. https://doi.org/10.1007/s00726-018-2681-9

GAO J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology. 8:13. ISSN: 2235-2988. https://doi.org/10.3389/fcimb.2018.00013

GUO Q, Cai X, Xu C, Luo Z, Sheng Y, Bao J, Chen X, Xu J. 2016. Effects of dietary supplementation with N-acetyl cysteine on antioxidant capacities and the expression of inflammatory cytokines in weaned piglets. Italian Journal of Animal Science. 15(4):634-641. ISSN: 1828-051X. https://doi.org/10.1080/1828051X.2016.1222244

HAMARD A, Mazurais D, Boudry G, Le Huërou-Luron I, Sève B, Le Floc'h N. 2010. A moderate threonine deficiency affects gene expression profile, permeability and glucose absorption capacity in the ileum of piglets. The Journal of Nutritional Biochemistry. 21(10):914-921. ISSN: 0955-2863. https://doi.org/10.1016/j.jnutbio.2009.07.004

JI FJ, Wang LX, Yang HS, Hu A, Yin YL. 2019. The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal. 13(11):2727-2735. ISSN: 1751-732X. https://doi.org/10.1017/S1751731119001800

JI Y, Fan X, Zhang Y, Li J, Dai Z, Wu Z. 2021. Glycine regulates mucosal immunity and the intestinal microbial composition in weaned piglets. Amino Acids. 1-14. ISSN: 1438-2199. https://doi.org/10.1007/s00726-021-02976-y

KANG P, Zhang L, Hou Y, Ding B, Yi D, Wang L, Zhu Y, Liu Y, Yin Y, Wu, G. 2014. Effects of L-proline on the growth performance, and blood parameters in weaned lipopolysaccharide (LPS)-challenged pigs. Asian-Australasian Journal of Animal Sciences. 27(8):1150-1156. ISSN: 1011-2367. https://doi.org/10.5713/ajas.2013.13828

KIM SW, Mateo RD, Yin YL, Wu G. 2007. Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Australasian Journal of Animal Sciences. 20(2):295-306. ISSN: 1011-2367. https://doi.org/10.5713/ajas.2007.295

KOO B, Choi J, Yang C, Nyachoti CM. 2020. Diet complexity and l-threonine supplementation: effects on growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. Journal of Animal Science. 98(5):125. ISSN: 1525-3163. https://doi.org/10.1093/jas/skaa125

LI H, Wan H, Mercier Y, Zhang X, Wu C, Wu X, Tang L, Che L, Lin Y, Xu S, Tian G, Wu D, Fang Z. 2014. Changes in plasma amino acid profiles, growth performance and intestinal antioxidant capacity of piglets following increased consumption of methionine as its hydroxy analogue. British Journal of Nutrition. 112(6):855-867.

ISSN: 1475-2662. https://doi.org/10.1017/S000711451400172X

LI W, Sun K, Ji Y, Wu Z, Wang W, Dai Z, Wu G. 2016a. Glycine regulates expression and distribution of claudin-7 and ZO-3 proteins in intestinal porcine epithelial cells. Journal of Nutrition. 146(5):964-969. ISSN: 1541-6100. https://doi.org/10.3945/jn.115.228312

LI XL, Jiang M, Ruan Z, Mi SM, Wu X, Yao K, Xiong X, Zhou Y, Yin YL. 2016b. Tryptophan increases intestinal permeability and decreases intestinal tight junction protein expression in weanling piglets. Journal of Animal Science. 94(suppl_3):87-90. ISSN: 1525-3163. https://doi.org/10.2527/jas.2015-9465

LIANG H, Dai Z, Liu N, Ji Y, Chen J, Zhang Y, Yang Y, Li J, Wu Z, Wu G. 2018. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Frontiers in Microbiology. 9:1736. ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2018.01736

LIANG H, Dai Z, Kou J, Sun K, Chen J, Yang, Y, Wu G, Wu, Z. 2019. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: Implication of Tryptophan-metabolizing microbiota. International Journal of Molecular Sciences. 20(1):20. ISSN: 1422-0067. https://doi.org/10.3390/ijms20010020

LIAO SF. 2021. Invited review: Maintain or improve piglet gut health around weanling: the fundamental effects of dietary amino acids. Animals. 11(4):1110. ISSN: 2076-2615. https://doi.org/10.3390/ani11041110

LIU Y, Wang X, Hou Y, Yin Y, Qiu Y, Wu G, Hu CAA. 2017. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids. 49(8):1277-1291. ISSN: 1438-2199. https://doi.org/10.1007/s00726-017-2450-1

LIU J, Zhang Y, Li Y, Yan H, Zhang H. 2019. L-tryptophan enhances intestinal integrity in diquat-challenged piglets associated with improvement of redox status and mitochondrial function. Animals. 9(5):266. ISSN: 2076-2615. https://doi.org/10.3390/ani9050266

MA X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z. 2015. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. Plos One. 10:1-16. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0117294

MAO X, Zeng X, Qiao S, Wu G, Li D. 2011. Specific roles of threonine in intestinal mucosal integrity and barrier function. Frontiers in Bioscience. 3:1192-1200. ISSN: 1945-0508. https://www.imrpress.com/journal/FBE/3/4/10.2741/E322

MAO X, Qi S, Yu B, He J, Yu J, Chen D. 2013. Zn 2+ and l-isoleucine induce the expressions of porcine β-defensins in IPEC-J2 cells. Molecular Biology Reports. 40(2): 1547-1552. ISSN: 1573-4978. https://doi.org/10.1007/s11033-012-2200-0

MAO X, Gu C, Ren M, Chen D, Yu B, He J, Ju J, Zheng P, Luo J, Luo Y, Wang J, Tian G, Yang Q. 2018. L-isoleucine administration alleviates rotavirus infection and immune response in the weaned piglet model. Frontiers in Immunology. 9:1654. ISSN: 1664-3224. https://doi.org/10.3389/fimmu.2018.01654

MCGILVRAY WD, Wooten H, Rakhshandeh AR, Petry A, Rakhshandeh A. 2019. Immune system stimulation increases dietary threonine requirements for protein deposition in growing pigs. Journal of Animal Science. 97(2):735-744. ISSN: 1525-3163. https://doi.org/10.1093/jas/sky468

MOLINO JP, Donzele JL, de Oliveira RFM, Saraiva A, Haese D, Fortes EI, de Souza MF. 2012. L-glutamine and L-glutamate in diets with different lactose levels for piglets weaned at 21 days of age. Revista Brasileira de Zootecnia. 41(1):98-105. ISSN: 1806-9290. https://www.scielo.br/j/rbz/a/7RmDX6Mc54B3vChGWbJFkSS/?lang=en

MORALES A, González F, Bernal H, Camacho RL, Arce N, Vásquez N, González GC, Htoo JK, Viana MT, Cervantes M. 2021. Effect of arginine supplementation on the morphology and function of intestinal epithelia, and serum concentrations of amino acids in pigs exposed to heat stress. Journal of Animal Science. 99(9): skab179. ISSN: 1525-3163. https://doi.org/10.1093/jas/skab179

NIE C, He T, Zhang W, Zhang G, Ma X. 2018. Branched chain amino acids: beyond nutrition metabolism. International Journal of Molecular Sciences. 19(4):954.

ISSN: 1422-0067. https://doi.org/10.3390/ijms19040954

NRC, National Research Council. 2012. Nutrient Requirements of Swine. 11th Ed. National Academy Press. Washington, DC, USA. Pp. 400. ISSN: 978-0-309-22423-9.

PHANG JM, Liu W, Hancock CN, Fischer JW. 2015. Proline metabolism and cancer: emerging links to glutamine and collagen. Current Opinion in Clinical Nutrition and Metabolic Care. 18(1):71-77. ISSN: 1473-6519.

https://doi.org/10.1097/MCO.0000000000000121

PINHEIRO RW, de Oliveira Silva FC, Fontes DO, Scotta BA, Almeida M, Souza LPO, Vidal TZB. 2015. Níveis de metionina+ cistina para leitões dos 6 aos 16 kg submetidos a diferentes graus de ativação do sistema imune. Revista Brasileira de Saúde e Produção Animal. 16(4):827-838. ISSN: 1519-9940.

https://www.scielo.br/j/rbspa/a/NXv5YNCPNyRmwm8RNcKrPVQ/?lang=pt

RAO Z, Li J, Shi B, Zeng Y, Liu Y, Sun Z, Wu L, Sun W, Tang Z. 2021. Dietary tryptophan levels impact growth performance and intestinal microbial ecology in weaned piglets via tryptophan metabolites and intestinal antimicrobial peptides. Animals. 11(3):817. ISSN: 2076-2615. https://doi.org/10.3390/ani11030817

REN M, Liu XT, Wang X, Zhang GJ, Qiao SY, Zeng XF. 2014. Increased levels of standardized ileal digestible threonine attenuate intestinal damage and immune responses in Escherichia coli K88+ challenged weaned piglets. Animal Feed Science and Technology. 195:67-75. ISSN: 1873-2216.

https://doi.org/10.1016/j.anifeedsci.2014.05.013

REN M, Zhang SH, Zeng XF, Liu H, Qiao SY. 2015. Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australasian Journal of Animal Sciences. 28:1742-1750. ISSN: 1976-5517. https://doi.org/10.5713/ajas.14.0131

REZAEI R, Wang WW, Wu ZL, Dai Z, Wang J, Wu G. 2013a. Biochemical and physiological bases for utilization of dietary amino acids by young pigs. Journal of Animal Science and Biotechnology. 4:7. ISSN: 2049-1891 https://doi.org/10.1186/2049-1891-4-7

REZAEI R, Knabe DA, Tekwe CD, Dahanayaka S, Eide SJ, Lovering SL, Ficken MD, Fielder SE and Wu G. 2013b. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids. 44:911-923. ISSN: 1438-2199. https://doi.org/10.1007/s00726-012-1420-x

SPRING S, Premathilake H, Bradway C, Shili C, DeSilva U, Carter S, Pezeshki A. 2020. Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Scientific Reports. 10:1-16. ISSN: 2045-2322. https://doi.org/10.1038/s41598-020-72816-8

SU W, Zhang H, Ying Z, Li Y, Zhou L, Wang F, Zhang L, Wang T. 2018. Effects of dietary L-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. European Journal of Nutrition. 57(8):2735-2745. ISSN: 1436-6215. https://doi.org/10.1007/s00394-017-1539-3

SUN Y, Wu Z, Li W, Zhang C, Sun K, Ji Y, Wang B, Jiao N, He B, Wang W, Dai Z, Wu G. 2015. Dietary L-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids. 47(8):1517-1525. ISSN: 1438-2199. https://doi.org/10.1007/s00726-015-1985-2

TANG Y, Tan B, Xiong X, Li F, Ren W, Kong X, Qiu W, Hardwidge RP, Yin Y. 2015. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids. 47(10):2199-2204. ISSN: 1438-2199. https://doi.org/10.1007/s00726-014-1781-4

TEIXEIRA ADO, Nogueira ET, Kutschenko M, Rostagno HS, Lopes DC. 2014. Inclusion of glutamine associated with glutamic acid in the diet of piglets weaned at 21 days of age. Revista Brasileira de Saude e Producao Animal. 15:881-896. ISSN: 1519-9940. https://www.scielo.br/j/rbspa/a/BLc4CNKC5QXRZ99HJzJygSB/?lang=en#

TOSSOU MCB, Liu H, Bai M, Chen S, Cai Y, Duraipandiyan V, Liu H, AdebowaleT, Al-Dhabi NA, Long N, Tarique H, Oso AO, Liu G, Yin Y. 2016. Effect of high dietary tryptophan on intestinal morphology and tight junction protein of weaned pig. BioMed Research International. ISSN: 2314-6141. https://doi.org/10.1155/2016/2912418

TREVISI P, Corrent E, Mazzoni M, Messori S, Priori D, Gherpelli Y, Simongiovanni A, Bosi P. 2015. Effect of added dietary threonine on growth performance, health, immunity and gastrointestinal function of weaning pigs with differing genetic susceptibility to Escherichia coli infection and challenged with E. coli K88ac. Journal of Animal Physiology and Animal Nutrition. 99(3):511-520. ISSN: 1439-0396. https://doi.org/10.1111/jpn.12216

VAN DER MEER Y, Lammers A, Jansman AJM, Rijnen MMJA, Hendriks WH, Gerrits WJJ. 2016. Performance of pigs kept under different sanitary conditions affected by protein intake and amino acid supplementation. Journal of Animal Science. 94(11):4704-4719. ISSN: 1525-3163. https://doi.org/10.2527/jas.2016-0787

WANG X, Qiao SY, Liu M, Ma YX. 2006. Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25 kg pigs. Animal Feed Science and Technology. 129(3-4):264-278. ISSN: 1873-2216. https://doi.org/10.1016/j.anifeedsci.2006.01.003

WANG W, Zeng X, Mao X, Wu G, Qiao S. 2010. Optimal dietary true ileal digestible threonine for supporting the mucosal barrier in small intestine of weanling pigs. Journal of Nutrition. 140(5):981-986. ISSN: 1541-6100 https://doi.org/10.3945/jn.109.118497

WANG Y, Zhang L, Zhou G, Liao Z, Ahmad H, Liu W, Wang T. 2012. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. British Journal of Nutrition. 108:1371-81. ISSN: 1475-2662.

https://doi.org/10.1017/S0007114511006763

WANG J, Zhao Y, Fang Z, Lin Y, Che L, Yang M, Wu D. 2013. Effects of dietary threonine and tryptophan on immune response of growing pigs inoculated with porcine reproductive and respiratory syndrome modified live virus vaccine. Chinese Journal of Animal Nutrition. 25(6):1189-1198. ISSN: 1006-267X.

https://doi.org/10.3969/j.issn.1006-267x.2013.06.010

WANG H, Zhang C, Wu G, Sun Y, Wang B, He B, Dai Z, Wu Z. 2014a. Glutamine enhances tight junction protein expression and modulates corticotropin releasing factor signaling in the jejunum of weanling piglets. Journal of Nutrition. 145(1):25-31. ISSN: 1541-6100. https://doi.org/10.3945/jn.114.202515

WANG W, Dai Z, Wu Z, Lin G, Jia S, Hu S, Dahanayaka S, Wu G. 2014b. Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids. 46:2037-2045. ISSN: 1438-2199. https://doi.org/10.1007/s00726-014-1758-3

WANG W, Wu Z, Lin G, Hu S, Wang B, Dai Z, Wu G. 2014c. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. Journal of Nutrition. 144:1540-1548. ISSN: 1541-6100. https://doi.org/10.3945/jn.114.194001

WANG H, Zhang C, Wu G, Sun Y, Wang B, He B, Dai Z, Wu Z. 2015a. Glutamine enhances tight-junction protein expression and modulates CRF signaling in the jejunum of weanling piglets. Journal of Nutrition. 145:25-31. ISSN: 1541-6100. https://doi.org/10.3945/jn.114.202515

WANG J, Li GR, Tan BE, Xiong X, Kong XF, Xiao DF, Xu MW, Wu MM, Huang B, Kim SW, Yin YL. 2015b. Oral administration of putrescine and proline during the suckling period improves epithelial restitution after early weaning in piglets. Journal of Animal Science. 93(4):1679-1688. ISSN: 1525-3163. https://doi.org/10.2527/jas.2014-8230

WANG X, Wei H, Cao J, Li Z, He P. 2015c. Metabolomics analysis of muscle from piglets fed low protein diets supplemented with branched chain amino acids using HPLC-high-resolution. Electrophoresis. 36(18):2250-2258. ISSN: 1522-2683. https://doi.org/10.1002/elps.201500007

WANG H, Ji Y, Wu G, Sun K, Sun Y, Li W, Wang B, He B, Zhang Q, Dai Z, Wu Z. 2015d. L-Tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. Journal of Nutrition. 145(6):1156-1162. ISSN: 1541-6100. https://doi.org/10.3945/jn.114.209817

WANG J, Tan BE, Li GR, Xiao H, Huang B, Zhang MH, Yin YL. 2016. Polyamine metabolism in the intestine of piglets is altered by weaning and proline supplementation. Journal of Animal Science. 94(suppl_3):423-428. ISSN: 1525-3163. https://doi.org/10.2527/jas.2015-9464

WANG H, Yan Y, Xia D, Yang Y, Li Y, Li F, Jiang X, Zu Y, Ye H, Yang L, Wang W. 2020. Dietary tryptophan modulates the composition of the ileum and cecum microbiota in weaned piglets after lipopolysaccharide challenge. Research Square. ISSN: 2693-5015. https://doi.org/10.21203/rs.3.rs-20520/v1

WIJNANDS KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. 2015. Arginine and citrulline and the immune response in sepsis. Nutrients. 7:1426-1463. ISSN: 2072-6643. https://doi.org/10.3390/nu7031426

WU G. 2013. Functional amino acids in nutrition and health. Amino Acids. 45:407-411. ISSN: 1438-2199. https://doi.org/10.1007/s00726-013-1500-6

WU L, Wang W, Yao K, Zhou T, Yin J, Li T, Yang L, He L, Yang X, Zhang H, Wang Q, Huang R, Yin Y. 2013. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One. 8(7):e69502. ISSN: 1932-6203.

https://doi.org/10.1371/journal.pone.0069502

WU G, Bazer FW, Dai Z, Li D, Wang J,Wu Z. 2014. Amino acid nutrition in animals: protein synthesis and beyond. Annual Review of Animal Biosciences. 2:387-417. ISSN: 2165-8110. https://doi.org/10.1146/annurev-animal-022513-114113

XIE C, Zhang S, Zhang G, Zhang F, Chu L, Qiao S. 2013. Estimation of the optimal ratio of standardized ileal digestible threonine to lysine for finishing barrows fed low crude protein diets. Asian-Australasian Journal Animal Science. 26:1172-1180. ISSN: 1525-3163. https://doi.org/10.5713/ajas.2013.13045

XU CC, Yang SF, Zhu LH, Cai X, Sheng YS, Zhu SW, Xu JX. 2014. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. Journal of Animal Science. 92(4):1504-1511. ISSN: 1525-3163. https://doi.org/10.2527/jas.2013-6755

YANG XF, Jiang ZY, Gong YL, Zheng CT, Hu YJ, Wang L, Huang L, Ma XY. 2016. Supplementation of pre-weaning diet with L-arginine has carry-over effect to improve intestinal development in young piglets. Canadian Journal of Animal Science. 96:52-59. ISSN: 1918-1825. https://cdnsciencepub.com/doi/10.1139/cjas-2015-0043

YAO K, Guan S, Li T, Huang R, Wu G, Ruan Z, Yin Y. 2011. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. British Journal of Nutrition. 105(5):703-709. ISSN: 1475-2662. https://doi.org/10.1017/S000711451000365X

YI D, Li B, Hou Y, Wang L, Zhao D, Chen H, Wu T, Zhou Y, Ding B, Wu G. 2018. Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids. 50(8), 1089-1100. ISSN: 1438-2199. https://doi.org/10.1007/s00726-018-2586-7

YING Y, Yun J, Guoyao W, Kaiji S, Zhaolai D, Zhenlong W. 2015. Dietary L-methionine restriction decreases oxidative stress in porcine liver mitochondria. Experimental Gerontology. 65:35-41. ISSN: 0531-5565. https://doi.org/10.1016/j.exger.2015.03.004

ZHANG S, Qiao S, Ren M, Zeng X, Ma X, Wu Z, Thacker P, Wu G. 2013. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids. 45:1191-1205. ISSN: 1438-2199. https://doi.org/10.1007/s00726-013-1577-y

ZHANG H, Li Y, Chen Y, Ying Z, Su W, Zhang T, Dong Y, Htoo JK, Zhang L, Wang T. 2019. Effects of dietary methionine supplementation on growth performance, intestinal morphology, antioxidant capacity and immune function in intra‐uterine growth‐retarded suckling piglets. Journal of Animal Physiology and Animal Nutrition. 103(3):868-881. ISSN: 1439-0396. https://doi.org/10.1111/jpn.13084

ZHENG P, Yu B, He J, Tian G, Luo Y, Mao X, Keying Zhang, Che L, Chen D. 2013. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. British Journal of Nutrition. 109(12):2253-2260. ISSN: 1475-2662.

https://doi.org/10.1017/S0007114512004321

ZHENG P, Song Y, Tian Y, Zhang H, Yu B, He J, Mao X, Yu J, Luo Y, Luo J, Huang Z, Tian G, Chen H, Chen D. 2018. Dietary arginine supplementation affects intestinal function by enhancing antioxidant capacity of a nitric oxide–independent pathway in low-birth-weight piglets. Journal of Nutrition. 148(11):1751-1759. ISSN: 1541-6100. https://doi.org/10.1093/jn/nxy198

ZHOU X, He L, Wan D, Yang H, Yao K, Wu G, Wu X, Yin Y. 2016. Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids. 48(7):1533-1540. ISSN: 1438-2199. https://doi.org/10.1007/s00726-016-2247-7

ZHU HL, Liu YL, Xie XL, Huang JJ, Hou YQ. 2013. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immunity. 19(3):242-252. ISSN: 1753-4267.

https://journals.sagepub.com/doi/10.1177/1753425912456223

Publicado

2023-05-20

Edição

Seção

Revisões literárias

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.