Efecto de dos cultivos de levadura en la digestibilidad de nutrientes y fermentación en becerras Holstein pre-destetadas

Autores/as

Palabras clave:

fermentación ruminal, nutrición de bovinos, probióticos, Saccharomyces boulardii, Saccharomyces cerevisiae

Resumen

El uso de probióticos a base de levaduras en la dieta de bovinos, ha demostrado mejorar las condiciones ruminales y con esto la absorción general de nutrientes. El objetivo del presente estudio fue evaluar el efecto de dos cepas de cultivos de levaduras (SC, Saccharomyces cerevisiae CNCM I-1077 o SB, Saccharomyces boulardii CNCM I-1079) en la digestibilidad de nutrientes en becerras pre-destetadas. Para ello, se utilizaron 30 becerras Holstein (60 d edad), las cuales fueron distribuidas aleatoriamente a los siguientes tratamientos: T (testigo); SC (1 g/d); o SB (1 g/d). El consumo de materia seca no se modificó por efecto de los cultivos de levadura. La digestibilidad de la materia seca, proteína cruda y fibra detergente neutra y ácida fue mayor en las becerras suplementadas con SB en comparación con aquellas no suplementadas o suplementadas con SC. Los valores de pH, concentración de nitrógeno amoniacal y proporción molar   de ácidos grasos volátiles fue similar en las becerras no suplementadas o suplementadas con los cultivos de levaduras. Se concluye que el cultivo de levadura SB (Saccharomyces boulardii CNCM I-1079) mejora la digestibilidad de los nutrientes en becerras pre-destetadas.

http://dx.doi.org/10.21929/abavet2022.33                   

e2022-61

https://www.youtube.com/watch?v=IUZDgS9EbqE

Citas

ALUGONGO GM, Xiao J, Wu Z, Li S, Wang Y, Cao Z. 2017. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology. 8:34. ISSN: 2049-1891.

https://doi.org/10.1186/s40104-017-0165-5

AMIN AB, Mao S. 2021. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants; A review. Animal Nutrition. 7:31-41. ISSN: 2405-6545.

https://doi.org/10.1016/j.aninu.2020.10.005

AOAC. 2019 Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC.

https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/

BAYATKOUHSAR J, Tahmasebi AM, Naserian AA, Mokarram RR, Valizadeh R. 2013. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Animal Feed Science and Technology. 186:1–11. ISSN: 0377-8401.

https://doi.org/10.1016/j.anifeedsci.2013.04.015

CAGLE CM, Fonseca MA, Callaway TR, Runyan CA, Cravey MD, Tedeschi LO. 2020. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Applied Animal Science. 36(1):36–47. ISSN: 2590-2865.

https://doi.org/10.15232/aas.2019-01888

CECONI I, Ruiz-Moreno M, DiLorenzo N, DiCostanzo A, Crawford GI. 2015. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index. Journal of Animal Science. 93:357–369. ISSN: 1525-3163.

https://doi.org/10.2527/jas.2014-8214

CHAUCHEYRAS-DURANT F, Fonty G. 2002. Influence of a probiotic yeast (Saccharomyces cerevisiae CNM I-1077) on microbial colonization and fermentation in the rumen of newborn lamb. Microbial Ecology in Health and Disease. 14:30–36. ISSN: 1651-2235.

https://doi.org/10.1080/089106002760002739

COCHRAN RC, Adam DC, Wallace JD, Galyean ML. 1986. Predicting digestibility of different diets with internal markers evaluation of four potential markers. Journal of Animal Science. 63(5):1476-1483. ISSN: 1525-3163.

https://doi.org/10.2527/jas1986.6351476x

COFFEY EL, Horan B, Evans RD, Berry DP. 2016. Milk production and fertility performance of Holstein, Friesian, and Jersey purebred cows and their respective crosses in seasonal-calving commercial farms. Journal of Dairy Science. 99:5681–5689. ISSN: 0022-0302.

http://dx.doi.org/10.3168/jds.2015-10530

COTTYN BG, Boucque CV. 1968. Rapid Methods for the Gas-Chromatographic Determination of Volatile Fatty Acids in Rumen Fluid. Journal of agriculture and food chemistry. 16(1):105–107. ISSN: 1520-5118.

https://doi.org/10.1021/jf60155a002

DIAO Q, Zhang R, Fu T. 2019. Review of strategies to promote rumen development in calves. Animals. 9(8):490 ISSN: 2076-2615.

https://doi.org/10.3390/ani9080490

DICKINSON SE, Elmore MF, Kriese-Anderson L, Elmore JB, Bailey NW, Dyce WP, Rodning SP, Biase HF. 2019. Evaluation of age, weaning weight, body condition score, and reproductive tract score in pre-selected beef heifers relative to reproductive potential. Journal of Animal Science and Biotechnology. 10:18. ISSN: 2049-1891.

https://doi.org/10.1186/s40104-019-0329-6

LEE JS, Kacem N, Kim WS, Peng DQ, Kim YJ, Joung YG, Lee C, Lee HG. 2019. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals. 9(8):510. ISSN: 2076-2615.

https://doi.org/10.3390%2Fani9080510

LIU S, Shah AM, Yuan M, Kang K, Wang Z, Wang L, Xue B, Zou H, Zhang X, Yu p, Wang H, Tian G, Peng Q. 2021. Effects of dry yeast supplementation on growth performance, rumen fermentation characteristics, slaughter performance and microbial communities in beef cattle. Animal Biotechnology. 1–11. ISSN: 10495398, 15322378.

https://doi.org/10.1080/10495398.2021.1878204

MALEKKHAHI M, Tahmasbi AM, Naserian AA, Danesh-Mesgaran M, Kleen JL, AlZahal O, Ghaffari MH. 2016. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Animal Feed Science and Technology. 213:29-43. ISSN: 0377-8401.

https://doi.org/10.1016/j.anifeedsci.2015.12.018

MATTHEWS C, Crispie F, Lewis E, Reid M, O´Toole PW, Cotter PD. 2019. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes. 10:115–132. ISSN: 1949-0976.

https://doi.org/10.1080/19490976.2018.1505176

MOHAMMED SF, Mahmood FA, Abas ER. 2018. A review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal of Entomology and Zoology Studies. 6:629–635. ISSN: 2320-7078.

https://doi.org/10.13140/RG.2.2.10675.37926

NOM (Norma Oficial Mexicana, NOM-061-ZOO-1999). Especificaciones zoosanitarias de los productos alimenticios para consumo animal. México.

https://www.gob.mx/senasica/documentos/nom-061-zoo-1999

OEZTUERK H, Schroeder B, Beyerbach M, Breves G. 2005. Influence of living and autoclaved yeast of Saccharomyces boulardii on in vitro ruminal microbial metabolism. Journal of Dairy Science. 88:2594-2600. ISSN: 0022-0302.

https://doi.org/10.3168/jds.S0022-0302(05)72935-0

PINLOCHE E, McEwan N, Marden JP, Bayourthe C, Auclair E, Newbold CJ. 2013. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS One 8(7):e67824. ISSN: 1932-6203.

https://doi.org/10.1371/journal.pone.0067824

QADIS AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Sato S. 2014. Effects of a Bacteria-Based Probiotic on Ruminal pH, Volatile Fatty Acids, and Bacterial Flora of Holstein Calves. Journal of Veterinary Medical Science. 76 (6): 877-885. ISSN: 0916-7250.

https://doi.org/10.1292/jvms.14-0028

RENAUD DL, Shock A, Roche SM, Steele MA, Chevaux E, Skidmore AL. 2019. Evaluation of Saccharomyces cerevisiae boulardii CNCM I-1079 fed before weaning on health and growth of male dairy calves. Applied Animal Science. 35(6): 570-576. ISSN: 2590-2865.

https://doi.org/10.15232/aas.2019-01889

SAS On Demand for Academics Dashboard. 2021. SAS Institute Inc. North Carolina State University

https://welcome.oda.sas.com/home

SHURSON GC. 2018. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology. 235:60-76. ISSN: 0377-8401.

https://doi.org/10.1016/j.anifeedsci.2017.11.010

VILLOT C, Ma T, Renaud DL, Ghaffari HM, Gibson DJ, Skidmore A, Chevaux E, Guan LL, Steele MA. 2019. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. Journal of Dairy Science. 102: 7011–7025. ISSN: 0022-0302.

https://doi.org/10.3168/jds.2018-16149

WILLIAMS CH, David DJ, Lisma O. 1962. The determination of chromic oxide in feces samples by atomic absorption spectrophotometry. The Journal of Agriculture Science. 59(3):381-388. ISSN: 1469-5146.

https://doi.org/10.1017/S002185960001546X

XIAO JX, Alugongo GM, Chung R, Dong SZ, Li SL, Yoon I, Wu ZH, Cao ZJ. 2016. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community. Journal of Dairy Science. 99:5401–5412. ISSN: 0022-0302.

https://doi.org/10.3168/jds.2015-10563

Descargas

Publicado

2022-12-01

Número

Sección

Notas de Investigación

Artículos más leídos del mismo autor/a