Oreochromis niloticus shows a higher prevalence of Beta-haemolytic streptococci when are maintained in cages than in ponds

Authors

Keywords:

pond culture, cage culture, prevalence, beta-haemolytic streptococci, Oreochromis niloticus

Abstract

Positive cases of Streptococcus in tilapia cause serious economic losses, however, there are no reports on the prevalence of Streptococcus in tilapia farmed within ponds and cages in the tropics, this is the first report about it. The goal was to compare the prevalence of beta-haemolytic streptococci in tilapia (Oreochromis niloticus) from pond and cage culture farming, in Chiapas, Mexico, also, evaluate the susceptibility to antibiotics. 155 fish between 250-300 gr were collected in 31 farms (12 ponds and 19 cages). The highest prevalence (45.16%, P<0.05) of beta-haemolytic streptococci was in fish with clinical manifestations from cages, compared to fish from ponds. S. agalactiae and S. alactolyticus were identified. Signs in fish infected with Streptococcus agalactiae included exophthalmia, ascites, cerebral congestion, hemorrhages, and melanization. 100% of the S. agalactiae strains were susceptible to beta-lactams, clindamycins, among others. There is a higher prevalence of beta-haemolytic streptococci in fish farming in cages compared to pond culture. The information generated in this study favors the implementation of sanitary strategies to optimize tilapia farming in tropical regions.

http://dx.doi.org/10.21929/abavet2023.19      

e2022-32

https://www.youtube.com/watch?v=77XteiY4la4

References

ALMEIDA P, Railsback J, Gleason JB. 2016. A Rare Case of Streptococcus alactolyticus Infective Endocarditis Complicated by Septic Emboli and Mycotic Left Middle Cerebral Artery Aneurysm. Case Reports in Infectious Diseases. 1–3. ISSN: 2090-6633. https://doi.org/10.1155/2016/9081352

AMAL MA, Zamri-Saad M. 2011. Streptococcosis in Tilapia (Oreochromis niloticus): A review. Pertanika Journal of Tropical Agricultural Science. 34(2):195-206. ISSN: ISSN 0128-7702. http://www.pertanika.upm.edu.my/pjtas/browse/regular-issue?article=JTAS-0146-2009

ANSHARY H, Kurniawan RA, Sriwulan S, Ramli R, Baxa DV. 2014. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. SpringerPlus. 3(1):1–11. ISSN: 2193-1801. https://doi.org/10.1186/2193-1801-3-627

BERGER C. 2020. La acuicultura y sus oportunidades para lograr el desarrollo sostenible en el Perú. South Sustainability. 1:1-11. ISSN 2708-7077. https://doi.org/10.21142/ss-0101-2020-003

BWALYA P, Simukoko C, Hang’ombe BM, Støre SC, Støre P, Gamil A A A, Evensen Ø, Mutoloki S. 2020. Characterization of streptococcus-like bacteria from diseased Oreochromis niloticus farmed on Lake Kariba in Zambia. Aquaculture. 523. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735185

CHU C, Huang PY, Chen HM, Wang YH, Tsai IA, Lu CC, Chen CC. 2016. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates. BMC Microbiology. 16(1):1-9. ISSN: 1471-2180. https://doi.org/10.1186/s12866-016-0794-4

CLSI (Clinical and Laboratory Standards Institute). 2015. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard. Wayne, IL.

https://clsi.org/standards/products/microbiology/documents/m100/

DANGWETNGAM M, Suanyuk N, Kong F, Phromkunthong W. 2016. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: Nine-year perspective. Journal of Medical Microbiology. 65(3): 247-254. ISSN: 0022-2615.

https://doi.org/10.1099/jmm.0.000213

FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2012. Consecuencias del cambio climático para la pesca y la acuicultura (K. Cochrane, C. De Young, D. Soto, T. Bahri (eds.). Documento técnico de pesca y acuacultura. ISSN: 2070-7037. http://www.fao.org/3/i0994s/i0994s00.htm

GARCÍA PJ, Ulloa RJB, Mendoza ES. 2021. Patógenos bacterianos y su resistencia a los antimicrobianos en los cultivos de tilapia en Guatemala. Uniciencia. 35(2):1–17. ISSN: 2215-3470. https://doi.org/10.15359/ru.35-2.4

HE RZ, Li ZC, Li SY, Li AX. 2021. Development of an immersion challenge model for Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquaculture. 531. ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735877

HERNÁNDEZ C, Aguirre G, López D. 2009. Aquaculture production systems with recirculation system in the North , Northeast and Northwest of Mexico. Revista Mexicana de Agronegocios. 25(5):117–130. ISSN: 1405-9282.

https://www.cabdirect.org/cabdirect/abstract/20123221342

HUICAB PZG, Landeros SC, Castañeda CMR, Lango RF, López CCJ, Platas RDE. 2016. Current State of Bacteria Pathogenicity and their Relationship with Host and Environment in Tilapia Oreochromis niloticus. Journal of Aquaculture Research & Development. 07(05). ISSN: 2155-9546. https://doi.org/10.4172/2155-9546.1000428

JANTRAKAJORN S, Maisak H, Wongtavatchai J. 2014. Comprehensive Investigation of Streptococcosis Outbreaks in Cultured Nile Tilapia, Oreochromis niloticus, and Red Tilapia, Oreochromis sp., of Thailand. Journal of the World Aquaculture Society. 45(4): 392-402. ISSN:1749-7345. https://doi.org/10.1111/jwas.12131

LAITH AA, Ambak MA, Hassan M, Sherif, SM, Nadirah M, Draman AS, Wahab W, Ibrahim WNW, Aznan AS, Jabar A, Najiah M. 2017. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Veterinary World. 10(1):101–111. ISSN: 2231-0916.

https://doi.org/10.14202/vetworld.2017.101-111

LEGARIO FS, Choresca CH, Turnbull JF, Crumlish M. 2020. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. Journal of Fish Diseases. 43(11):1431–1442. ISSN: 1365-2761. https://doi.org/10.1111/jfd.13247

MARCUSSO PF, Aguinaga JY, Da Silva CG, Eto SF, Fernandes DC, Mello H, De Almeida MNF, Salvador R, De Engrácia MJR, De Moraes FR. 2015. Influência da temperatura na infecção de tilápias do nilo por Streptococcus agalactiae. Brazilian Journal of Veterinary Research and Animal Science. 52(1): 57–62. ISSN: 1678-4456.

https://doi.org/10.11606/issn.1678-4456.v52i1p57-62

MISHRA A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS. 2018. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Molecules and Cells. 41(6):495-505. ISSN 0219-1032. https://doi.org/10.14348/molcells.2018.2154

MOHAMMAD Noor Azmai, Saad MZ, Zahrah AS, Zulkafli AR. 2015. Water quality influences the presence of Streptococcus agalactiae in cage cultured red hybrid tilapia, Oreochromis niloticus × Oreochromis mossambicus. Aquaculture Research. 46(2):313–323. ISSN:1365-2109. https://doi.org/10.1111/are.12180

NG WK, Romano N. 2013. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture. 5(4): 220–254. ISSN:1753-5131. https://doi.org/10.1111/raq.12014

NOM-033-ZAG/ZOO-2014. Norma Oficial Mexicana NOM-033-ZOO-1995. Sacrificio humanitario de los animales domésticos y silvestres.

https://www.dof.gob.mx/nota_detalle.php?codigo=5376424&fecha=18/12/2014

OIDTMANN B, Peeler E, Lyngstad T, Brun E, Bang Jensen B, Stärk KDC. 2013. Risk-based methods for fish and terrestrial animal disease surveillance. Preventive Veterinary Medicine. 112(1–2):13–26. ISSN: 0167-5877.

https://doi.org/10.1016/j.prevetmed.2013.07.008

ORTEGA Y, Barreiro SF, Castro SG, Huancaré PK, Manchego SA, Belo MAA, Figueiredo MAP, Manrique WG, Sandoval CN. 2017. Beta-haemolytic streptococci in farmed Nile tilapia, Oreochromis niloticus, from Sullana-Piura, Perú. Revista MVZ Córdoba. 22(1): 5653–5665. https://doi.org/10.21897/rmvz.925

ORTEGA C, García I, Irgang R, Fajardo R, Tapia-Cammas D, Acosta J, Avendaño-Herrera R. 2018. First identification and characterization of Sstreptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. J Fish Dis. 41(5): 773- 782. https://doi.org/10.1111/jfd.12775

OSMAN KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IMI, Ibrahim MDS, Hessain AM, Orabi A, Fawzy NM. 2017. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Veterinary Research. 13(1):1-10. ISSN: 1746-6148. https://doi.org/10.1186/s12917-017-1289-8

PRADEEP PJ, Suebsing R, Sirthammajak S, Kampeera J, Jitrakorn S, Saksmerprome V, Turner W, Palang I, Vanichviriyakit R, Senapin S, Jeffs A, Kiatpathomchai W, Withyachumanarnkul B. 2016. Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquaculture Reports. 3:58–66. ISSN: 2352-5134. https://doi.org/10.1016/j.aqrep.2015.12.002

PULIDO E. 2012. Alternativas en el manejo y prevención de las principales causas de mortalidad en cultivos intensivos y superintensivos de tilapia en Colombia. Revista Electrónica de Ingeniería en Producción Acuícola. 6(6). ISSN. 1909-8138. https://revistas.udenar.edu.co/index.php/reipa/article/view/1508

RAMOS LJ, Montenegro M. 2012. Las centrales hidroeléctricas en México: pasado, presente y futuro. Tecnología y Ciencias Del Agua. 3(2):103–121. ISSN: 0187-8336. http://www.redalyc.org/articulo.oa?id=353531977007

REY AL, Iregui CA, Verján N. 2002. Diagnóstico clínico patológico de brotes de enfermedades en tilapia roja (Oreochromis spp.). Revista de La Facultad de Medicina Veterinaria y de Zootecnia. 49(1): 13–21. ISSN 0120-2952.

http://dx.doi.org/10.15446/rfmvz

SADER (Secretaria de Agricultura y Desarrollo Rural). 2021. La CONAPESCA promueve la producción y consumo de tilapia en el país. México.

https://www.gob.mx/agricultura/yucatan/articulos/la-conapesca-promueve-la-produccion-y-consumo-de-tilapia-en-el-pais?idiom=es

SANDOVAL JJ, Rosado VM, Rodríguez CR. 2013. Efectos individuales de la ciclidogiriasis y estreptococosis inducidas en la bioquímica sanguínea de la tilapia Oreochromis niloticus. Hidrobiológica. 23(3):328–339. ISSN 0188-8897.

http://www.scielo.org.mx/pdf/hbio/v23n3/v23n3a6.pdf

SUDPRASEART C, Wang PC, Chen SC. 2021. Phenotype, genotype and pathogenicity of Streptococcus agalactiae isolated from cultured tilapia (Oreochromis spp.) in Taiwan. Journal of Fish Diseases. 44:747–756. ISSN 1365-2761. https://doi.org/10.1111/jfd.13296

SUN J, Fang W, Ke B, He D, Liang Y, Ning D, Tan H, Peng H, Wang Y, Ma Y, Ke C, Deng X. 2016. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia. Scientific Reports. 6. ISSN 2045-2322. https://doi.org/10.1038/srep26319

UICN (Centro de Cooperación del Mediterráneo). 2007. Guía para el Desarrollo Sostenible de la Acuicultura Mediterránea. Interacciones entre la Acuicultura y el Medio Ambiente. ISBN: 978-2-8317-0976-5.

https://www.uicnmed.org/web2007/documentos/2007/09/acua_es_final.pdf

YUASA K, Kamaishi T, Hatai K, Bahnnan M, Borisutpeth P. 2008. Two cases of streptococcal infections of cultured tilapia in Asia. Diseases in Asian Aquaculture. VI:259–268. http://www.fhs-afs.net/daa_vi_files/19.pdf

Published

2023-11-07

Issue

Section

Original Articles