Análisis integral de la bioquímica médica: interacciones moleculares y vías en el metabolismo

Autores/as

Palabras clave:

Bioquímica, carbohidratos, proteínas, lípidos, ADN, ARN

Resumen

La bioquímica es la unión de la biología y la química, sirviendo como la base molecular de la vida. Esta revisión tiene como objetivo proporcionar una comprensión profunda de los conceptos bioquímicos fundamentales, las principales vías metabólicas y su relevancia para la gestión de la salud y las enfermedades. Comienza con una visión general de la estructura atómica y la variedad de reacciones bioquímicas que ocurren dentro de las células para sintetizar moléculas. Luego, la discusión se centra en el agua y los enlaces bioquímicos, destacando cómo la flexibilidad molecular de los monosacáridos, aminoácidos, ácidos grasos y nucleótidos facilita reacciones rápidas y satisface las necesidades energéticas y estructurales del cuerpo. La revisión explora el metabolismo de los carbohidratos, abarcando la glucogénesis y la vía de las pentosas fosfato, ilustrando cómo las células utilizan los azúcares. Se extiende a biomoléculas cruciales como el ADN y ARN, explicando cómo las células traducen la información genética y sintetizan lípidos. La revisión detalla cómo las células descomponen los carbohidratos y lípidos de la dieta y almacenados para liberar energía esencial para diversas funciones fisiológicas. Los avances en la investigación biomédica integran una comprensión más profunda de los principios bioquímicos, combinando química estructural, enzimología y biología celular para apoyar el desarrollo de habilidades de resolución de problemas clínicos, manteniendo así su utilidad en la educación y práctica médica.

http://dx.doi.org/10.21929/abavet2025.12                   

e2025-37

https://www.youtube.com/watch?v=StvkPpXwnog

 

Citas

AGIUS L. 2015. Role of glycogen phosphorylase in liver glycogen metabolism. Molecular Aspects of Medicine. 46(1):34-45. ISSN: 1872-9452.

https://doi.org/https://doi.org/10.1016/j.mam.2015.09.002

ALKORTA I, Elguero J, Frontera A. 2020. Not only hydrogen bonds: other noncovalent interactions. Crystals. 10(10):1-29. https://doi.org/https://doi.org/10.3390/cryst10030180

ARIMBASSERI AG, Maraia RJ. 2016. RNA polymerase III advances: structural and tRNA functional views. Trends in Biochemical Sciences. 41(6):546-559. ISSN: 0968-0004.

https://doi.org/https://doi.org/10.1016/j.tibs.2016.03.003

BAILEY J. 2022a. Chapter 7. History of the atom, 1803-1932. In: Bailey J, Inventive geniuses who changed the world. New York, United States: Springer Cham. Pp.173-201. ISBN: 978-3-030-81380-2. https://doi.org/10.1007/978-3-030-81381-9

BAILEY J. 2022b. Chapter 12. Nucleosides, nucleotides, polynucleotides (RNA and DNA) and the genetic code. In: Bailey J, Inventive geniuses who changed the world. New York, United States: Springer Cham. Pp. 313-340. ISBN: 978-3-030-81380-2.

https://doi.org/10.1007/978-3-030-81381-9

BERETTA M. 2024. Lavoisier and the history of Chemistry. Society for the History of Alchemy and Chemistry Ambix. 71(2):209-224. ISSN: 1745-8234.

https://doi.org/https://doi.org/10.1080/00026980.2024.2324618

BERGER JM, Moon YA. 2021. Increased hepatic lipogenesis elevates liver cholesterol content. Molecules and Cells. 44(2):116-125. ISSN: 0219-1032.

https://doi.org/https://doi.org/10.14348/molcells.2021.2147

BROSH RM, Jr. Matson SW. 2020. History of DNA helicases. Genes. 11(3):1-15. ISSN: 2073-4425. https://doi.org/https://doi.org/10.3390/genes11030255

BROWN ID. 2023. A rigorous theory of valence. Structural Chemistry. 34(2):361-389. ISSN: 1040-0400. https://doi.org/https://doi.org/10.1007/s11224-023-02128-w

BUSTO E, Gotor FV, Gotor V. 2010. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chemical Society Reviews. 39(11):4504-4523. ISSN: 1460-4744. https://doi.org/https://doi.org/10.1039/C003811C

CARAGINE CM, Haley SC, Zidovska A. 2019. Nucleolar dynamics and interactions with nucleoplasm in living cells. Elife. 8(26):1-21. ISSN: 2050-084X.

https://doi.org/https://doi.org/10.7554/eLife.47533

CASTELLANOS GA, Duan X, Fei Z, Gutiérrez HR, Huang Y, Huang X, Quereda J, Qian Q, Sutter E, Sutter P. 2022. Van der Waals heterostructures. Nature Reviews Methods Primers. 2(1):58-63. ISSN: 2662-8449. https://doi.org/https://doi.org/10.1038/s43586-022-00139-1

CHAKMA P, Konkolewicz D. 2019. Dynamic covalent bonds in polymeric materials. Angewandte Chemie International Edition. 58(29):9682-9695. ISSN: 1521-3773.

https://doi.org/https://doi.org/10.1002/anie.201813525

CHAKRABARTY RP, Chandel NS. 2022. Beyond ATP, new roles of mitochondria. Biochemical (London). 44(4):2-8. ISSN: 0954-982X.

https://doi.org/https://doi.org/10.1042/bio_2022_119

CHANDEL NS. 2021a. Carbohydrate metabolism. Cold Spring Harbor Perspectives in Biology. 13(1):1-10. ISSN: 1943-0264.

https://doi.org/https://doi.org/10.1101/cshperspect.a040568

CHANDEL NS. 2021b. Nucleotide metabolism. Cold Spring Harbor Perspectives in Biology. 13(7):1-17. ISSN: 1943-0264.

https://doi.org/https://doi.org/10.1101/cshperspect.a040592

CHEN Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. 2020. Imaging beam-sensitive materials by electron microscopy. Advanced Materials. 32(16):e1907619. ISSN: 1521-4095. https://doi.org/https://doi.org/10.1002/adma.201907619

COSTA A, Diffley JFX. 2022. The initiation of eukaryotic DNA replication. Annual Review of Biochemistry. 91(1):107-131. ISSN: 1545-4509.

https://doi.org/https://doi.org/10.1146/annurev-biochem-072321-110228

COVARRUBIAS AJ, Perrone R, Grozio A, Verdin E. 2021. NAD(+) metabolism and its roles in cellular processes during ageing. Nature Reviews Molecular Cell Biology. 22(2):119-141. ISSN: 1471-0080. https://doi.org/https://doi.org/10.1038/s41580-020-00313-x

CROSS E, Dearlove DJ, Hodson L. 2023. Nutritional regulation of hepatic de novo lipogenesis in humans. Current Opinion in Clinical Nutrition & Metabolic Care. 26(2):65-71. ISSN: 1473-6519. https://doi.org/https://doi.org/10.1097/MCO.0000000000000914

CUI Q, Harshman J. 2022. A simple approach for beginners to drawing Lewis structures, resonance forms, and isomers. ChemRxiv. 1(1):1-8.

https://doi.org/https://doi.org/10.26434/chemrxiv-2022-m4ffd

DIXON JR, Gorkin DU, Ren B. 2016. Chromatin domains: the unit of chromosome organization. Molecular Cell. 62(5):668-680. ISSN: 1097-4164.

https://doi.org/https://doi.org/10.1016/j.molcel.2016.05.018

DOELLO S, Forchhammer K. 2023. Phosphoglucomutase comes into the spotlight. Journal of Experimental Botany. 74(5):1293-1296. ISSN: 1460-2431.

https://doi.org/https://doi.org/10.1093/jxb/erac513

EL-SHORBAGY MA, Bouaouda A, Abualigah L, Hashim FA. 2025. Atom search optimization: a comprehensive review of its variants, applications, and future directions. PeerJ Computer Science. 11(1):e2722. ISSN: 2376-5992.

https://doi.org/https://doi.org/10.7717/peerj-cs.2722

FONTANA GA, Gahlon HL. 2020. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Research. 48(20):11244-11258. ISSN: 1362-4962.

https://doi.org/https://doi.org/10.1093/nar/gkaa804

FONTECILLA CJC. 2022. The complex roles of adenosine triphosphate in bioenergetics. Chembiochem. 23(10):e202200064. ISSN: 1439-7633.

https://doi.org/https://doi.org/10.1002/cbic.202200064

FROMMER WB, Schulze WX, Lalonde S. 2003. Hexokinase, jack-of-all-trades. Science. 300(5617):261-263. ISSN: 1095-9203.

https://doi.org/https://doi.org/10.1126/science.1084120

GAMBLIN DP, Scanlan EM, Davis BG. 2009. Glycoprotein synthesis: an update. Chemical Reviews. 109(1):131-163. ISSN: 1520-6890.

https://doi.org/https://doi.org/10.1021/cr078291i

GAWTHROP PJ, Cursons J, Crampin EJ. 2015. Hierarchical bond graph modelling of biochemical networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471(2184):20-31. ISSN: 1364-5021.

https://doi.org/https://doi.org/10.1098/rspa.2015.0642

GIARDINA B. 2022. Hemoglobin: multiple molecular interactions and multiple functions. An example of energy optimization and global molecular organization. Molecular Aspects of Medicine. 84(1):10-21. ISSN: 1872-9452.

https://doi.org/https://doi.org/10.1016/j.mam.2021.101040

GREER A. 2006. Christopher Foote's discovery of the role of singlet oxygen [1O2 (1Delta g)] in photosensitized oxidation reactions. Accounts of Chemical Research. 39(11):797-804. ISSN: 0001-4842. https://doi.org/https://doi.org/10.1021/ar050191g

GRICE JW, Jones IT. 2024. Iconic models in science and psychology. Theory & Psychology. 34(6):815-835. ISSN: 0959-3543.

https://doi.org/https://doi.org/10.1177/09593543241287748

GUTIÉRREZ BSA. 2023. Teaching proposal to promote the construction of representations of Gilbert Newton Lewis chemical bonds through models in 10th grade students. Revista Electrónica EDUCyT. 14:629-635.

https://die.udistrital.edu.co/revistas/index.php/educyt/article/view/343

HANSEN JL, Schmeing TM, Moore PB, Steitz TA. 2002. Structural insights into peptide bond formation. Proceedings of the National Academy of Sc

iences of the United States of America. 99(18):116-125. ISSN: 0027-8424.

https://doi.org/https://doi.org/10.1073/pnas.172404099

HARGITTAI I. 2023. Structural chemistry-tools and concepts. Structural Chemistry. 34(2):355-359. ISSN: 1040-0400. https://doi.org/https://doi.org/10.1007/s11224-023-02143-x

HE Q, Chen Y, Wang Z, He H, Yu P. 2023. Cellular uptake, metabolism and sensing of long-chain fatty acids. Frontiers in Bioscience-Landmark. 28(1):10-20. ISSN: 2768-6698 https://doi.org/https://doi.org/10.31083/j.fbl2801010

HELMUT S. 2021a. Chapter 1. Molecular biology of the cell. In: Helmut S, Biophysics for beginners. A journey through the cell nucleus. New York, United States: Jenny Stanford Publishing. Pp. 1-18. ISBN: 978-1-25-983793-7. https://doi.org/10.1201/9781003223108

HELMUT S. 2021b. Chapter 4. DNA. In: Helmut S, Biophysics for beginners. A journey through the cell nucleus. New York, United States: Jenny Stanford Publishing. Pp. 34-77 ISBN: 978-1-25-983793-7. https://doi.org/10.1201/9781003223108

HELMUT S. 2021c. Chapter 6. RNA and protein folding. In: Helmut S, Biophysics for beginners. A journey through the cell nucleus. New York, United States: Jenny Stanford Publishing. Pp. 97-113. ISBN: 978-1-25-983793-7.

https://doi.org/10.1201/9781003223108

HIRANO T. 2015. Chromosome dynamics during mitosis. Cold Spring Harbor Perspectives in Biology. 7(6). ISSN: 1943-0264.

https://doi.org/https://doi.org/10.1101/cshperspect.a015792

HIRATA T, Kizuka Y. 2021. N-Glycosylation. Advances in Experimental Medicine and Biology. 1325(1):3-24. ISSN: 0065-2598. https://doi.org/https://doi.org/10.1007/978-3-030-70115-4_1

HOFFMANN PC, Kreysing JP, Khusainov I, Tuijtel MW, Welsch S, Beck M. 2022. Structures of the eukaryotic ribosome and its translational states in situ. Nature Communications. 13(1):7435. ISSN: 2041-1723.

https://doi.org/https://doi.org/10.1038/s41467-022-34997-w

HREN M, Božič M, Fakin D, Kleinschek KS, Gorgieva S. 2021. Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy & Fuels. 5(3):604-637. ISSN: https://doi.org/https://doi.org/10.1039/D0SE01373K

HWEE MC, See ZH. 2021. PhyGeometry: organizing physiology. BLDE University Journal of Health Sciences. 6(2):111-114. ISSN: 2468-838X.

https://doi.org/https://doi.org/10.4103/bjhs.bjhs_112_20

JEON YG, Kim YY, Lee G, Kim JB. 2023. Physiological and pathological roles of lipogenesis. Nature Metabolism. 5(5):735-759. ISSN: 2522-5812.

https://doi.org/https://doi.org/10.1038/s42255-023-00786-y

JUMP DB. 2009. Mammalian fatty acid elongases. Methods in Molecular Biology. 579(1):375-389. ISSN: 1940-6029. https://doi.org/https://doi.org/10.1007/978-1-60761-322-0_19

KAJIHARA Y, Murakami M, Unverzagt C. 2016. Chapter 11. Chemical glycoprotein synthesis. In: Shang CH , Zulueta MLM, Glycochemical synthesis: strategies and applications. Washington, United States: John Wiley & Sons, Inc. Pp. 263-292. ISBN: 9781118299845. https://doi.org/10.1002/9781119006435.ch11

KAMBAS L. 2025. Antoine-Laurent Lavoisier's ‘sur la nature de l'eau': an annotated english translation. Annals of Science. 82(1):102-132. ISSN: 1464-505X.

https://doi.org/https://doi.org/10.1080/00033790.2023.2289531

KLEIN U. 2015. A revolution that never happened. Studies in History and Philosophy of Science. 49(1):80-90. ISSN: 0039-3681.

https://doi.org/https://doi.org/10.1016/j.shpsa.2014.11.003

KOMAR AA. 2016. The yin and yang of codon usage. Human Molecular Genetics. 25(R2):R77-R85. ISSN: 1460-2083 https://doi.org/https://doi.org/10.1093/hmg/ddw207

KOPITZ J. 2017. Lipid glycosylation: a primer for histochemists and cell biologists. Histochemistry and Cell Biology. 147(2):175-198. ISSN: 1432-119X.

https://doi.org/https://doi.org/10.1007/s00418-016-1518-4

KRUGER NJ, von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organisation. Current Opinion in Plant Biology. 6(3):236-246. ISSN: 1369-5266. https://doi.org/https://doi.org/10.1016/S1369-5266(03)00039-6

L'ANNUNZIATA FM. 2022. Chapter 1 - Birth of modern Physics: from the discovery of radioactivity to the discovery of the proton, electron, and atomic nucleus. In: L'Annunziata FM, Radioactivity. History, Science, Vital Uses and Ominous Peril. Meriden, United States: Elsevier. Pp. 115-167. ISBN: 978-1-25-983793-7. https://doi.org/10.1016/B978-0-323-90440-7.00002-8

LACASSE S. 2023. Charles Augustin de Coulomb, the artisan of modern geotechnical engineering. Revue Française de Géotechnique. 1(175):9-18. ISSN: 0181-0529.

https://doi.org/https://doi.org/10.1051/geotech/2023006

LI CH, Zuo JL. 2020. Self-healing polymers based on coordination bonds. Advanced Materials. 32(27):e1903762. ISSN: 1521-4095.

https://doi.org/https://doi.org/10.1002/adma.201903762

LI J, Guo B, Zhang W, Yue S, Huang S, Gao S, Ma J, Cipollo JF, Yang S. 2022. Recent advances in demystifying O-glycosylation in health and disease. Proteomics. 22(23):e2200156. ISSN: 1615-9861.

https://doi.org/https://doi.org/10.1002/pmic.202200156

LI X, Ji M, Li H, Wang H, Xu M, Rong H, Wei J, Liu J, Chen W. 2020. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: principles and applications. New Materialist Research. 2(3):554-586. ISSN: 2590-2393.

https://doi.org/https://doi.org/10.1016/j.matt.2019.12.024

LING ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. 2023. Amino acid metabolism in health and disease. Signal Transduction and Targeted Therapy. 8(1):345-351. ISSN: 2059-3635.

https://doi.org/https://doi.org/10.1038/s41392-023-01569-3

LUXFORD CJ, Bretz SL. 2013. Moving beyond definitions: what student-generated models reveal about their understanding of covalent bonding and ionic bonding. Chemistry Education Research and Practice. 14(2):214-222.

https://doi.org/https://doi.org/10.1039/C3RP20154F

MATYUSHOV DV. 2022. War and peace between electrostatic and van der Waals forces regulate translational and rotational diffusion. Journal of Chemical Physics. 157(8):12-23. ISSN: 1089-7690. https://doi.org/https://doi.org/10.1063/5.0098506

MOAZZEN AN, McKellar A. 2013. Spectroscopy of dimers, trimers and larger clusters of linear molecules. International Reviews in Physical Chemistry. 32(4):611-650. ISSN: 0144-235X. https://doi.org/https://doi.org/10.1080/0144235X.2013.813799

NAGAO A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. 2023. Quality control of protein synthesis in the early elongation stage. Nature Communications. 14(1):27-34. ISSN: 2041-1723.

https://doi.org/https://doi.org/10.1038/s41467-023-38077-5

NAKANO A. 2022. The Golgi apparatus and its next-door neighbors. Front Cell Dev Biol. 10(1):88-94. ISSN: 2296-634X. https://doi.org/https://doi.org/10.3389/fcell.2022.884360

NEMATBAKHSH S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF. 2021. Molecular regulation of lipogenesis, adipogenesis and fat deposition in chicken. Genes. 12(3):1-19. ISSN: 2073-4425. https://doi.org/https://doi.org/10.3390/genes12030414

NILSSON A, Pettersson LG. 2015. The structural origin of anomalous properties of liquid water. Nature Communications. 6(1):1-12. ISSN: 2041-1723.

https://doi.org/https://doi.org/10.1038/ncomms9998

NISSEN P, Hansen J, Ban N, Moore PB, Steitz TA. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science. 289(5481):920-930. ISSN: 0036-8075.

https://doi.org/https://doi.org/10.1126/science.289.5481.920

NOLFI DD, Braganza A, Shiva S. 2020. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology. 37(1):10-17. ISSN: 2213-2317.

https://doi.org/https://doi.org/10.1016/j.redox.2020.101674

NORDNESS O, Brennecke JF. 2020. Ion dissociation in ionic liquids and ionic liquid solutions. Chemical Reviews. 120(23):12873-12902. ISSN: 1520-6890.

https://doi.org/https://doi.org/10.1021/acs.chemrev.0c00373

OPRON K, Burton ZF. 2018. Ribosome structure, function, and early evolution. International Journal of Molecular Sciences. 20(1):1-11. ISSN: 1422-0067.

https://doi.org/https://doi.org/10.3390/ijms20010040

PACHECO GV, Caballero ZA, Martínez GS, Prado ROF, García CCA. 2021. Biochemistry and metabolic pathways of polysaccharides, lipids, and proteins. Abanico veterinario. 11(1):1-26. ISSN: 2448-6132. https://doi.org/https://doi.org/10.21929/abavet2021.47

PANJA S, Patra S, Mukherjee A, Basu M, Sengupta S, Dutta PK. 2013. A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 10(4):858-868. ISSN: 1557-9964. https://doi.org/https://doi.org/10.1109/TCBB.2013.82

POPOVA E, Popov VL. 2021. The legacy of Coulomb and generalized laws of friction. Proceedings in Applied Mathematics and Mechanics. 20(1):e202000062. ISSN: 1617-7061. https://doi.org/https://doi.org/10.1002/pamm.202000062

PRATT LR, Chaudhari MI, Rempe SB. 2016. Statistical analyses of hydrophobic interactions: a mini-review. Journal of Physical Chemistry B 120(27):6455-6460. ISSN: 1520-5207. https://doi.org/https://doi.org/10.1021/acs.jpcb.6b04082

PRESCOD WC. 2024. Atomic physics for beginners. New Scientist. 263(3509):22-30. ISSN: 0262-4079. https://doi.org/https://doi.org/10.1016/S0262-4079(24)01687-7

PROKSCH E. 2018. pH in nature, humans and skin. Journal of Dermatology. 45(9):1044-1052. ISSN: 1346-8138 https://doi.org/https://doi.org/10.1111/1346-8138.14489

RAGAB A. 2025. Recent advances in the synthesis, reaction, and bio-evaluation potential of purines as precursor pharmacophores in chemical reactions: a review. Royal Society of Chemistry Advances. 15(5):3607-3645. ISSN: 2046-2069.

https://doi.org/https://doi.org/10.1039/d4ra08271k

ROUSSY TS, Caldwell L, Wright T, Cairncross WB, Shagam Y, Ng KB, Schlossberger N, Park SY, Wang A, Ye J, Cornell EA. 2023. An improved bound on the electron's electric dipole moment. Science. 381(6653):46-50. ISSN: 1095-9203.

https://doi.org/https://doi.org/10.1126/science.adg4084

SALIS A, Monduzzi M. 2016. Not only pH. Specific buffer effects in biological systems. Current Opinion in Colloid & Interface Science. 23(1):1-9. ISSN: 1359-0294.

https://doi.org/https://doi.org/10.1016/j.cocis.2016.04.004

SARDANS J, Janssens IA, Ciais P, Obersteiner M, Peñuelas J. 2021. Recent advances and future research in ecological stoichiometry. Perspectives in plant ecology, evolution and systematics. 50(1):1-70. ISSN: 1433-8319.

https://doi.org/https://doi.org/10.1016/j.ppees.2021.125611

SCHOMBS M, Gervay HJ. 2016. Chapter 1. Glycochemistry overview and progress. In: Shang CH , Zulueta MLM, Glycochemical synthesis: strategies and applications. Washington, United States: John Wiley & Sons, Inc. Pp. 1-34. ISBN: 9781118299845 https://doi.org/10.1002/9781119006435.ch1

SIBLEY JNM. 2021. Chapter 2. Electrostatic fields. In: Sibley JNM, Introduction to electromagnetism. From Coulomb to Maxwell. Boca Raton, United States: CRC Press. Pp. 7-56. ISBN: 9780367462703. https://doi.org/10.1201/9780367462703

SIES H. 2015. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 4(1):180-183. ISSN: 2213-2317.

https://doi.org/https://doi.org/10.1016/j.redox.2015.01.002

SIES H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. 2022. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology. 23(7):499-515. ISSN: 1471-0080. https://doi.org/https://doi.org/10.1038/s41580-022-00456-z

SIES H, Mailloux RJ, Jakob U. 2024. Fundamentals of redox regulation in biology. Nature Reviews Molecular Cell Biology. 25(9):701-719. ISSN: 1471-0080.

https://doi.org/https://doi.org/10.1038/s41580-024-00730-2

SPATOLISANO E, Pellegrini LA, de Angelis AR, Cattaneo S, Roccaro E. 2023. Ammonia as a carbon-free energy carrier: NH3 cracking to H2. Industrial & Engineering Chemistry Research. 62(28):10813-10827. ISSN: 0888-5885.

https://doi.org/https://doi.org/10.1021/acs.iecr.3c01419

STAVILA E, Yuliati F, Adharis A, Laksmono JA, Iqbal M. 2023. Recent advances in synthesis of polymers based on palm oil and its fatty acids. Royal Society of Chemistry Advances. 13(22):14747-14775. ISSN: 2046-2069.

https://doi.org/https://doi.org/10.1039/d3ra01913f

STICH V, Berlan M. 2004. Physiological regulation of NEFA availability: lipolysis pathway. Proceedings of the Nutrition Society. 63(2):369-374. ISSN: 0029-6651.

https://doi.org/https://doi.org/10.1079/PNS2004350

STINCONE A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Gruning NM, Kruger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews of the Cambridge Philosophical Society. 90(3):927-963. ISSN: 1469-185X.

https://doi.org/https://doi.org/10.1111/brv.12140

SUGITA S. 2008. Mechanisms of exocytosis. Acta Physiologica. 192(2):185-193. ISSN: 1748-1716. https://doi.org/https://doi.org/10.1111/j.1748-1716.2007.01803.x

SULLIVAN I, Goryachev A, Digdaya IA, Li X, Atwater HA, Vermaas DA, Xiang C. 2021. Coupling electrochemical CO2 conversion with CO2 capture. Nature Catalysis. 4(11):952-958. ISSN: 2520-1158. https://doi.org/https://doi.org/10.1038/s41929-021-00699-7

SUNO H, Ohno N. 2024. Virtual hydrogen, a VR hydrogen atomic orbitals viewer in physics and chemistry. Procedia Computer Science. 246(1):1710-1719. ISSN: 1877-0509. https://doi.org/https://doi.org/10.1016/j.procs.2024.09.666

SUNTE J. 2025. Sources of electrons and protons in the universe. Advancement of Signal Processing and its Applications. 8(2):1-3.

https://doi.org/https://doi.org/10.5281/zenodo.15309776

TANAKA H. 2000. Simple physical model of liquid water. Journal of Chemical Physics. 112(2):799-809. ISSN: 0021-9606. https://doi.org/https://doi.org/10.1063/1.480609

TESLAA T, Ralser M, Fan J, Rabinowitz JD. 2023. The pentose phosphate pathway in health and disease. Nature Metabolism. 5(8):1275-1289. ISSN: 2522-5812.

https://doi.org/https://doi.org/10.1038/s42255-023-00863-2

TURNER KL. 2016. A cost-effective physical modeling exercise to develop students’ understanding of covalent bonding. Journal of Chemical Education. 93(6):1073-1080. ISSN: 0021-9584. https://doi.org/https://doi.org/10.1021/acs.jchemed.5b00981

VERBERNE AJ, Korim WS, Sabetghadam A, Llewellyn SIJ. 2016. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. British Journal of Pharmacology. 173(9):1425-1437. ISSN: 1476-5381 https://doi.org/ https://doi.org/10.1111/bph.13458

WANG X, Shen X, Yan Y, Li H. 2021. Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Bioscience Reports. 41(4):1-12. ISSN: 1573-4935.

https://doi.org/https://doi.org/10.1042/BSR20204402

WEISS MS, Brandl M, Suhnel J, Pal D, Hilgenfeld R. 2001. More hydrogen bonds for the (structural) biologist. Trends in Biochemical Sciences. 26(9):521-523. ISSN: 0968-0004. https://doi.org/https://doi.org/10.1016/s0968-0004(01)01935-1

XIAO F, Chen Z, Wei Z, Tian L. 2020. Hydrophobic Interaction: a promising driving force for the biomedical applications of nucleic acids. Advanced Science. 7(16):20-28. ISSN: 2198-3844. https://doi.org/https://doi.org/10.1002/advs.202001048

XIE N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. 2020. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduction and Targeted Therapy. 5(1):227-235. ISSN: 2059-3635.

https://doi.org/https://doi.org/10.1038/s41392-020-00311-7

XIN SY, Weigang L. 2016. Chapter 3. General aspects in O-glycosidic bond formation. In: Shang CH, Zulueta MLM, Glycochemical synthesis: strategies and applications. Washington, United States: John Wiley & Sons, Inc. Pp. 69-95. ISBN: 9781118299845. https://doi.org/10.1002/9781119006435.ch3

YAMAMOTO T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y. 2011. Biochemistry of uridine in plasma. Clinica Chimica Acta. 412(19-20):1712-1724. ISSN: 1873-3492. https://doi.org/https://doi.org/10.1016/j.cca.2011.06.006

YAO NY, O'Donnell ME. 2021. The DNA replication machine: structure and dynamic function. Subcellular Biochemistry. 96(1):233-258. ISSN: 0306-0225.

https://doi.org/https://doi.org/10.1007/978-3-030-58971-4_5

YUAN Y, Li J, Zhu Y, Qiao Y, Kang Z, Wang Z, Tian X, Huang H, Lai W. 2025. Water in electrocatalysis. Angewandte Chemie International Edition in English. 64(18):e202425590. ISSN: 1521-3773.

https://doi.org/https://doi.org/10.1002/anie.202425590

ZHANG Y, Guo S, Xie C, Fang J. 2020. Uridine metabolism and its role in glucose, lipid, and amino acid homeostasis. Biomedical Research International. 2020(1):70-92. ISSN: 2314-6141. https://doi.org/https://doi.org/10.1155/2020/7091718

Descargas

Publicado

2025-12-28

Número

Sección

Revisiones de Literatura

Artículos más leídos del mismo autor/a