Edad de corte en la composición química del ensilado de maíz blanco asgrow-7573

Diego Jiménez-Leyva, Javier Romo-Rubio, Leopoldo Flores-Aguirre, Briceida Ortiz-López, Rubén Barajas-Cruz

Resumen

Para determinar la influencia de la edad al corte en la composición química del ensilado de maíz blanco, se sembraron 36 parcelas (cuatro surcos; 8 m) con el híbrido de maíz blanco Asgrow-7573. En un diseño en bloques completos (DBCA) al azar con cuatro repeticiones, fueron asignadas a nueve fechas de corte: 103, 107, 111, 115, 119, 123, 127, 131 y 135 días a partir de la siembra. La planta se cortó 12 cm del suelo y fue picada a 3 cm; se prepararon mini-silos (5 kg) en bolsa de plástico y se les extrajo el aire. Los silos se abrieron después de 45 días y se les determinó materia seca, cenizas, proteína cruda, FDN, FDA y pH. A los resultados se les aplicó ANDEVA para un DBCA y análisis por polinomios. La materia seca del forraje verde y del ensilado, así como el pH aumentaron de manera lineal (P < 0.00001) a como se incrementó la edad al corte. La proteína cruda fue mayor (P < 0.05) en las primeras fechas. FDN y FDA mostraron un comportamiento cuadrático (P < 0.00001). Se concluye que el corte entre los días 123 y 127 favorece la composición química del ensilado de maíz blanco.

 

 ABSTRACT

To determine the influence of cutting age on the chemical composition of white corn silage, 36 plots were planted (four rows; 8 m) with the white corn hybrid Asgrow-7573. In completely randomized block design, with four replications assigned to nine cutting ages: 103, 107, 111, 115, 119, 123, 127, 131, and 135 days from seeding date. Plants were cut 12 cm over ground, and chopped to 3 cm size; mini-silages (5 kg) were prepared in plastic bags, and the air was extracted. The silages were open after 45 days, and dry matter, ashes, crude protein NDF, ADF and pH were determined. Results were analyzed by ANOVA for a completely randomized block design and polynomial analyses were performed. The dry matter (from fresh forage and silage) as pH  (P < 0.00001) when cutting age increased. Crude protein was higher (P < 0.05) during early cutting ages. NDF and ADF showed a quadratic response (P < 0.00001). It is concluded that cutting age from 123 to 127 days improves chemical composition of white corn silage.

 

Palabras clave

Maíz, materia seca, ensilado, edad al corte, pH

Texto completo:

PDF

Referencias

ABDELHADI LO, Santini FJ. Corn silages vs. grain sorghum silage as a supplement to growing steers grazing high quality pastures: effects of performance and ruminal fermentation. Animal Feed Science and Technology. 2006; 127:33-43. doi:10.1016/j.anifeedsci.2005.08.010

ALVARENGA SS, Campos SVF, Detmann E, Ferreira RDV, Mendes JRR, Mello PA. Different forage sources for F1 Holstein×Gir dairy cows. Livestock Science. 2011; 142:48–58. doi:10.1016/j.livsci.2011.06.017

ALVES SP, Cabrita ARJ, Jeronimo E, Bessa RJB, Fonseca AJM. Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. Journal of Animal Science. 2011. 89: 2537-2545. doi: 10.2527/jas.2010-3128

AOAC. Official Methods of Analysis. 15th ed. Assoc. Off. Anal. Chem., Arlington, VA. 1990. ISBN 0-935584-42-0

ARRIOLA KG, Kim SC, Huisden CM, Adesogan AT. Stay-green ranking and maturity of corn hybrids: 1. Effects on dry matter yield, nutritional value, fermentation characteristics, and aerobic stability of silage hybrids in Florida. Journal Dairy Science. 2012; 95: 964–974. doi: 10.3168/jds.2011-4524

BAL MA, Coors JG, Shaver RD. Impact of the maturity of corn for use as silage in the diets of dairy cows on intake, digestion, and milk production. Journal Dairy Science. 1997; 80:2497–2503. doi:10.3168/jds.S0022-0302(97)76202-7

BASSO FC, Adesogan AT, Lara EC, Rabelo CHS, Berchielli TT, Teixeira IAMA, Siqueira GR, Reis RA. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs. Journal of Animal Science. 2014; 92:5640–5650. doi:10.2527/jas2014-8258

DUNIERE L, Jin L, Smiley B, M. Qi, Rutherford W, Wang Y, McAllister T. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage. Journal of Animal Science. 2015; 93:2322–2335. doi:10.2527/jas.2014-8287

FERRARETTO LF, Crump PM, Shaver RD. Meta-analysis: Effect of corn silage harvest practices on intake, digestion, and milk production by dairy cows. Journal of Dairy Science. 2013; 96:533–550. http://dx.doi.org/ 10.3168/jds.2012-5932

FILYA I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology. 2004; 116:141–150. doi:10.1016/j.anifeedsci.2004.06.003

GONZÁLEZ FC, Peña AR, Núñez GH. Etapas de corte, producción y calidad forrajera de híbridos de maíz de diferente ciclo biológico. Revista Fitotecnia Mexicana. 2006; 29(2):103–107.

http://www.revistafitotecniamexicana.org/documentos/29-2%20Especial%202/18a.pdf

HELANDER C, Nørgaard P, Zaralis K, Martinsson K, Murphy M, Nadeau E. Effects of maize crop maturity at harvest and dietary inclusion rate of maize silage on feed intake and performance in lambs fed high-concentrate diets. Livestock Science. 2015; 178:52–60. http://dx.doi.org/10.1016/j.livsci.2015.05.002

INEGI (Instituto Nacional de Estadística y Geografía.). 2013. http://www.inegi.org.mx/. 30 de junio 2013.

ISLAM MR, Garcia SC, Horadagoda A. Effects of irrigation and rates and timing of nitrogen fertilizer on dry matter yield, proportions of plant fractions of maize and nutritive value and in vitro gas production characteristics of whole crop maize silage. Animal Feed Science and Technology. 2012; 172:125–135.

doi:10.1016/j.anifeedsci.2011.11.013

KENNINGTON LR, Hunt CW, Szasz JI, Grove AV, Kezar W. Effect of cutting height and genetics on composition, intake, and digestibility of corn silage by beef heifers. Journal of Animal Science. 2005; 83:1445–1454. doi:10.2527/2005.8361445x

MIRON J, Zuckerman E, Adin G, Solomon R, Shoshani E, Nikbachat M, Yosef E, Zenou A, Weinberg ZG, Chen Y, Halachmi I, Ghedalia DB. Comparison of two forage sorghum varieties with corn and the effect of feeding their silages on eating behavior and lactation

performance of dairy cows. Animal Feed Science and Technology. 2007; 139:23–39. doi:10.1016/j.anifeedsci.2007.01.011

NEGRI M, Bacenetti J, Manfredini A, Lovarelli D, Fiala M, Maggiore TM, Bocchi S. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass and Bioenergy. 2014; 67:339–346.

http://dx.doi.org/10.1016/j.biombioe.2014.05.016

NASEM. National Academies of Sciences, Engeenering, and Medicine. Nutrient Requirements of Beef Cattle. Eighth Revised Edition. The National Academies Press. Washington, D.C. 2016:312. ISBN 978-0-309-31702-3; doi: 10.17226/19014.

NRC. Nutrient Requirements of Dairy Cattle. The National Academy Press. Washington, D.C. 2001:13-21 y 284. ISBN 0-309-06997-1

NÚÑEZ HG, Contreras EFG, Contreras RF. Características agronómicas y químicas importantes en híbridos de maíz para forraje con alto valor energético. Téc. Pecu. Méx. 2003; 41 (1): 37 - 48.

http://cienciaspecuarias.inifap.gob.mx/editorial/index.php/Pecuarias/article/viewFile/1332/1327

NÚÑEZ HG, Payán JA G, Peña AR, González FC, Ruiz OB, Arzola CA. Caracterización agronómica y nutricional del forraje de variedades de especies anuales en la región norte de México. Revista Mexicana de Ciencias Pecuarias. 2010; 1(2):85–98.

http://www.scielo.org.mx/pdf/rmcp/v1n2/v1n2a1.pdf

REZAEI J, Rouzbehan Y, Zahedifar M, Fazaeli H. Effects of dietary substitution of maize silage by amaranth silage on feed intake, digestibility, microbial nitrogen, blood parameters, milk production and nitrogen retention in lactating Holstein cows. Animal Feed Science and Technology. 2015; 202:32–41.

http://dx.doi.org/10.1016/j.anifeedsci.2015.01.016

ROBINSON PH, Swanepoel N, Heguy JM, Price T, Meyer DM. Shrink losses in commercially sized corn silage piles: quantifying total losses and where they occur. Science of the Total Environment. 2016; 542:530-539.

http://dx.doi.org/10.1016/j.scitotenv.2015.10.090

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación), SIAP (Servicio de Informacional Agroalimentaria y Pesquera). 2013. http://www.siap.gob.mx/. 25 de junio 2013

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación), 2016. https://www.gob.mx/sagarpa/articulos/maiz-blanco-y-amarillo-alimentacion-e-industria?idiom=es. 09 de septiembre 2016

STATISTIX 9. User´s Manual. Analytical Software. 2007: 243-246, 287-289, y 296-314. ISBN 978-1-881789-07-9.

STEEL R, Torrie J. Bioestadística. Segunda edición. Mc Graw Hill. 1988:188-194.

ISBN 968-451-495-6.

VAN SOEST PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science. 1991; 74(10):3583-3597.

doi: http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2

SU-JIANG Z, Chaudhry AS, Ramdani D, Osman A, Xue-feng G, Edwards GR, Cheng L. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. Journal of Integrative Agriculture. 2016; 15(1):175–182.

doi: 10.1016/S2095-3119(14)60939-4

ZARALIS K, Nørgaard P, Helander C, Murphy M, Weisbjerg MR, Nadeau E. Effects of maize maturity at harvest and dietary proportion of maize silage on intake and performance of growing/finishing bulls. Livestock Science. 2014; 168:89–93.

http://dx.doi.org/10.1016/j.livsci.2014.07.013

Enlaces refback

  • No hay ningún enlace refback.