Criopreservación espermática de Ambystoma mexicanum (Shaw & Nodder, 1798)

Juan Rivera-Pacheco, José Herrera-Barragán, Miguel León-Galván, José Ocampo-Cervantes, Juan Pérez-Rivero, Fernando Gual-Sill

Resumen

El Ambystoma mexicanum se encuentra en peligro de extinción en vida libre, debido a efectos antropogénicos; la criopreservación espermática para su reproducción en cautiverio, puede ayudar a su conservación ex situ. El objetivo de esta investigación fue identificar la viabilidad en fresco y post descongelación de espermatozoides provenientes de diferentes espermatóforos. Durante la temporada reproductiva se indujo en nueve ejemplares, la liberación de espermatóforos mediante la reducción de la temperatura del agua. La concentración promedio por espermatóforo fue de 2.6 ± 0.6 X104 espermatozoides. Se determinó en espermatozoides en fresco y post descongelación, una reducción del 30% de espermatozoides vivos y un incremento de 15 % de morfología anormal. Con las lectinas WGA y PNA, unidas a FITC, se determinaron dos patrones de fluorescencia distintos con cada una, lo cual evidencio la presencia y distribución membranal de N-acetil glucosamina, ácido siálico y manosa respectivamente. Los porcentajes de espermatozoides con cada patrón de fluorescencia mostraron diferencias asociadas al número de espermatóforos de cada liberación. Se determinaron diferencias en la viabilidad de espermatozoides obtenidos de liberaciones con diferente número de espermatóforos. El protocolo para la obtención y criopreservación espermática de A mexicanum, fue eficiente como herramienta para utilizar semen criopreservado para su reproducción ex situ.

Palabras clave

anfibio; conservación; espermatóforo; urodelo

Referencias

ANANJEVA NB, Uteshev VK, Orlov NL, Gakhova EN. 2015. Strategies for conservation of endangered amphibian and reptile species. Biological Bulletin. 42:432–439.

https://link.springer.com/article/10.1134/S1062359015050027

ATENCIO V, Pérez E, Espinosa J, Pardo S. 2013. Evaluación de dimetilacetamida como crioprotector para la crioconservación de semen de Bocachico prochilodus magdalenae. Archivos de Medicina Veterinaria. 45(2):151-158.

http://dx.doi.org/10.4067/S0301-732X2013000200006

BROWNE R, Chester R. Figiel Jr. 2011. Amphibian conservation and cryopreservation of sperm, cells, and tissues. In Cryopreservation in Aquatic Species. 8(3):345-365.

http://www.herpconbio.org/Volume_8/Issue_3/Figiel_2013.pdf

BROWNE RK, Kaurova SA, Uteshev VK, Shishova NV, McGinnity D, Figiel CR, Mansour N, Agnew D, Wu M, Gakhova EN, Dzyuba B, Cosson J. 2015. Sperm motility of externally fertilizing fish ans amphibians. Theriogenology. 83(1):1-13. https://doi.org/10.1016/j.theriogenology.2014.09.018

BROWNE RK, Silla AJ, Upton R, Della-Togna G, Marcec-Greaves R, Shishova NV, Uteshev VK, Proaño B, Pérez OD, Mansour N, Kaurova SA, Gakhova EN, Cosson J, Dyzuba B, Kramarova LI, McGinnity D, Gonzalez M, Clulow J, Clulow S. 2019. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology. 5:133:187-200. https://doi.org/10.1016/j.theriogenology.2019.03.035. PMID: 31155034.

CATENAZZI A. 2015. State of the world’s amphibians. Annual Review of Environment and Resources. 40:91-119. https://doi.org/10.1146/annurev-environ-102014-021358

CLULOW J, Trudeau VL, Kouba AJ. 2014. Amphibian declines in the twenty-first century: Why we need assisted reproductive technologies. In Reproductive Sciences in Animal Conservation, W.V. Holt, J.L. Brown, and P. Comizzoli, eds. (New York, NY: Springer New York), pp. 275-316. https://doi.org/10.1007/978-1-4939-0820-2_12

COMIZZOLI P, Songsasen N, Hagedorn M, Wildt DE. 2012. Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology. 78(8):1666-1681. https://doi.org/10.1016/j.theriogenology.2012.04.008.

CHESTER RF. 2013. Cryopreservation of sperm from the axolotl Ambystoma mexicanum: implications for conservation. Herpetological Conservation and Biology. 8(3):748-755. http://www.herpconbio.org/Volume_8/Issue_3/Figiel_2013.pdf

DOYLE JM, McCormick CR, De Woody JA. 2011. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size: Technical advances. Molecular Ecology Resources. 11(1):101-106.

https://doi.org/10.1111/j.1755-0998.2010.02892.x.

EPI. Info R7. 2020. paquete estadístico de libre acceso Epi. Info 7R.

https://www.cdc.gov/epiinfo/esp/es_pc.html

HERRERA JA, Calderón G, Cruz C, Ávila MA, Quintero GE, Fierro RC. 2017. Changes in the membrane carbohydrates from sperm cryopreserved with dimethylsulfoxide or polyvinylpyrrolidone of red-tailed hawk (Buteo jamaicencis). Cryo Letters. 38(4):257-262. PMID: 29734426. https://pubmed.ncbi.nlm.nih.gov/29734426/

HALL KW, Eisthen HL, Williams BL. 2016. Proteinaceous pheromone homologs identified from the cloacal gland transcriptome of a male axolotl, Ambystoma mexicanum. PLOS ONE 11, e0146851. https://doi.org/10.1371/journal.pone.0146851

JIMÉNEZ JO, Aviña CR, Ramírez AE, Lucero FG, Andreu CG. 2017. Conservación ex-situ de poblaciones en riesgo de ajolotes (Ambystoma spp.) del estado de puebla, Mexico. Revista Latinoamericana el Ambiente y las Ciencias. 8(18):1-10.

http://cmas.siu.buap.mx/portal_pprd/work/sites/rlac/resources/LocalContent/90/1/8(18)-1.pdf

KHATTAK S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, Crawford K, Tanaka EM. 2014. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-promedioted recombination. Nature Protocols. 9(3):529-540. https://doi.org/10.1038/nprot.2014.040

NOM-059-SEMARNAT-2010, Norma Oficial Mexicana. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo.

https://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf

MANSOUR N, Lahnsteiner F, Patzner RA. 2011. Collection of gametes from live axolotl, Ambystoma mexicanum, and standardization of in vitro fertilization. Theriogenology. 75(2): 354-361. https://doi.org/10.1016/j.theriogenology.2010.09.006

MENDOZA VT. 2012. Importancia ecológica y cultural de una especie endémica de ajolote (Ambystoma dumerilii) del lago de Patzcuaro Michoacan. Etnobiología. 10(2):40-49. https://revistaetnobiologia.mx/index.php/etno/article/view/212/213

MILLER DJ. 2015. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reproduction in Domestic Animals. 50 Suppl (2):31-39.

PMID: 26174917 DOI: 10.1111/rda.12570

NAOFUMI M. 2015. Protein-carbohydrate interaction between sperm and the egg-coating envelope and its regulation by dicalcin, a Xenopus laevis, zona pellucida protein-associated protein. Molecules. 20(5):9468-9486.

https://doi.org/10.3390/molecules20059468

PRIETO MT, Sanchez-Calabuig MJ, Hildebrandt TB, Santiago-Moreno J. Saragusty J. 2014. Sperm cryopreservation in wild animals. European Journal of Wildlife Research. 60: 851-864. https://link.springer.com/article/10.1007%2Fs10344-014-0858-4

SÁEZ FJ, Madrid JF, Cardoso S, Gómez L, Hernández F. 2004. Glycoconjugates of the urodele amphibian testis shown by lectin cytochemical methods. Microscopy Research and Technique. 64(1):63-76. https://doi.org/10.1002/jemt.20059

SHISHOVA NR, Uteshev VK, Kaurova SA, Browne RK, Gakhova EN. 2011. Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with rana temporaria as a model research species. Theriogenology. 75(2):220-232. https://doi.org/10.1016/j.theriogenology.2010.08.008

SILLA AJ, y Byrne PG. 2019. The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs. Annual Review of Animal Biosciences. 7(1):499-519. https://doi.org/10.1146/annurev-animal-020518-115056

SUNNY A, Monroy-Vilchis O, Fajardo V, Aguilera-Reyes U. 2014. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in México. Conservation Genetics. 15:49-59.

https://link.springer.com/article/10.1007/s10592-013-0520-9

TANISŁAW K, Anna W, Magdalena K, Krzysztof G. 2017. Application of two staining methods for sperm morphometric evaluation in domestic pigs. Journal of Veterinary Research. 61(3):345-349. https://doi.org/10.1515/jvetres-2017-0045

PELÁEZ J, Bongalhardo DC, Long JA. 2011. Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poultry Science. 90(2):435-43. https://doi.org/10.3382/ps.2010-00998.

TAKU S, Masakazu A, Seiji G. 2004. A new method to extract sperm from spermatophores of the male spiny king crab P αrαlithodes brevipes (Anomura: lithodidae). Crustacean Research. (33):10-14.

https://www.jstage.jst.go.jp/article/crustacea/33/0/33_KJ00004479508/_pdf

IUCN the Red List of Threatened Species. 2020. Disponible en línea en: https://www.iucnredlist.org/search?query=AMBYSTOMA%20MEXICANUM&searchType=species

URIBE MC, Mejía-Roa V. 2014. Testicular structure and germ cells morphology in salamanders. Spermatogenesis. 4, e988090. https://doi.org/10.4161/21565562.2014.988090

TIETJE M, Rödel M. 2018. Evaluating the predicted extinction risk of living amphibian species with the fossil record. Ecology Letters. 21(8):1135-1142.

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13080

Enlaces refback

  • No hay ningún enlace refback.