Neurobiología y modulación de la hipertermia inducida por estrés agudo y fiebre en los animales

Daniel Mota-Rojas, Agatha Miranda-Cortés, Alejandro Casas-Alvarado, Patricia Mora-Medina, Luciano Boscato-Funes, Ismael Hernández-Ávalos

Resumen

La hipertermia inducida por estrés es una respuesta aguda que se presenta a corto plazo en individuos que están frente a un estímulo estresante y que dicha respuesta puede aportar información significativa sobre el grado de estrés. Sin embargo, no es claro todavía si la vía neurológica pueda ser modificada al mismo grado en la que se percibe el estrés. Además, no se tiene suficiente claridad en cómo es que los factores que modifican el grado de percepción de estrés actúan sobre la Hipertermia Inducida por Estrés (SIH, por sus siglas en inglés). Asimismo, las investigaciones señalan que posiblemente la respuesta térmica tenga una mayor influencia cardiovascular al generar el consumo de recursos energéticos. De igual manera, los factores físicos que inducen dicha respuesta han sido cuestionados, ya que la evidencia reciente señala que además los factores sociales como la presencia de coespecíficos atenúan la respuesta térmica pero cuando se impide la convivencia o alguna otra conducta social como la crianza, la respuesta incrementa la SIH. Por tal motivo, el objetivo de este artículo es analizar la neurobiología de la hipertermia inducida por estrés y su diferencia conceptual con la fiebre infecciosa, así como integrar los factores que lo modulan, analizando los avances científicos recientes de la respuesta térmica inducida por estrés.

Palabras clave

temperatura; estrés; bienestar; termogénesis; respuesta térmica

Referencias

BI S. 2014. Stress Prompts Brown Fat into Combustion. Cell Metab. 20:205–207. https://doi.org/10.1016/j.cmet.2014.07.017

BITTENCOURT M de A, Melleu FF, Marino-Neto J. 2015. Stress-induced core temperature changes in pigeons (Columba livia). Physiol. Behav. 139:449–458. https://doi.org/10.1016/j.physbeh.2014.11.067

CASAS-ALVARADO A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Reyes-Sotelo B, Martínez-Burnes J. 2020. Advances in infrared thermography: surgical aspects, vascular changes and pain monitoring in veterinary medicine. J. Therm. Biol. 92:102664. https://doi.org/10.1016/j.jtherbio.2020.102664

CLARKE A, Pörtner H-O. 2010. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 85(4):703-727. https://doi.org/10.1111/j.1469-185X.2010.00122.x

COSTA-FERREIRA W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC. 2016. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors. Front. Pharmacol. 7. https://doi.org/10.3389/fphar.2016.00262

CRESTANI CC. 2016. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front. Physiol. 7. https://doi.org/10.3389/fphys.2016.00251

DALLMANN R, Steinlechner S, Von Hörsten S, Karl T. 2006. Stress-induced hyperthermia in the rat: Comparison of classical and novel recording methods. Lab. Anim. 40: 186–193. https://doi.org/10.1258/002367706776319015

DOS REIS DG, Fortaleza EAT, Tavares RF, Corrêa FMA. 2014. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats. Stress. 17: 362–372. https://doi.org/10.3109/10253890.2014.930429

DYMOND KE, Fewell JE. 1998. Gender Influences the Core Temperature Response to a Simulated Open Field in Adult Guinea Pigs. Physiol. Behav. 65: 889–892. https://doi.org/10.1016/S0031-9384(98)00198-X

ENGSTRÖM L, Ruud J, Eskilsson A, Larsson A, Mackerlova L, Kugelberg U, Qian H, Vasilache AM, Larsson P, Engblom D, Sigvardsson M, Jönsson J-I, Blomqvist A. 2012. Lipopolysaccharide-Induced Fever Depends on Prostaglandin E2 Production Specifically in Brain Endothelial Cells. Endocrinology 153: 4849–4861. https://doi.org/10.1210/en.2012-1375

EVANS SS, Repasky EA, Fisher DT. 2015. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15: 335–349. https://doi.org/10.1038/nri3843

FARAJI J, Metz GAS. 2020. Infrared Thermography Reveals Sex-Specific Responses to Stress in Mice. Front. Behav. Neurosci. 14. https://doi.org/10.3389/fnbeh.2020.00079

FULLER-JACKSON JP, Clarke IJ, Henry BA. 2017. Chapter 12: Animal Models for Manipulation of Thermogenesis. Animals Models for the Study of Human Disease. Elsevier, Australia, pp. 281-312. http://doi.org/10.1016/b978-0-12-809468-6.00012-7

HASDAY JD, Thompson C, Singh IS. 2014. Fever, Immunity, and Molecular Adaptations, in: Comprehensive Physiology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 109–148. https://doi.org/10.1002/cphy.c130019

HAYASHIDA S, Oka T, Mera T, Tsuji S. 2010. Repeated social defeat stress induces chronic hyperthermia in rats. Physiol. Behav. 101: 124–131. https://doi.org/10.1016/j.physbeh.2010.04.027

HERBORN KA, Graves JL, Jerem P, Evans NP, Nager R, McCafferty DJ, McKeegan DEF. 2015. Skin temperature reveals the intensity of acute stress. Physiol. Behav. 152: 225–230. https://doi.org/10.1016/j.physbeh.2015.09.032

HORIUCHI J, McAllen RM, Allen AM, Killinger S, Fontes MAP, Dampney RAL. 2004. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. Am. J. Physiol. Integr. Comp. Physiol. 287: R824–R832. https://doi.org/10.1152/ajpregu.00221.2004

HOUTEPEN LC, Peterse DP, Westphal KGC, Olivier B, Vinkers CH. 2011. The autonomic stress-induced hyperthermia response is not enhanced by several anxiogenic drugs. Physiol. Behav. 102: 105–109. https://doi.org/10.1016/j.physbeh.2010.09.002

IKOMA Y, Kusumoto-Yoshida I, Yamanaka A, Ootsuka Y, Kuwaki T. 2018. Inactivation of Serotonergic Neurons in the Rostral Medullary Raphé Attenuates Stress-Induced Tachypnea and Tachycardia in Mice. Front. Physiol. 9. https://doi.org/10.3389/fphys.2018.00832

JAHR JS, Lee VK. 2010. Intravenous acetaminophen. Anesthesiol Clin. 28: 619–645. https://doi.org/10.1016/j.anclin.2010.08.006

KATAOKA N, Hioki H, Kaneko T, Nakamura K. 2014. Psychological Stress Activates a Dorsomedial Hypothalamus-Medullary Raphe Circuit Driving Brown Adipose Tissue Thermogenesis and Hyperthermia. Cell Metab. 20: 346–358. https://doi.org/10.1016/j.cmet.2014.05.018

KIYOKAWA Y. 2015. Social Odors: Alarm Pheromones and Social Buffering. pp. 47–65. https://doi.org/10.1007/7854_2015_406

KIYOKAWA Y, Honda A, Takeuchi Y, Mori Y. 2014. A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav. Brain Res. 267: 189–193. https://doi.org/10.1016/j.bbr.2014.03.043

KIYOKAWA Y, Kikusui T, Takeuchi Y, Mori Y. 2004. Partner’s Stress Status Influences Social Buffering Effects in Rats. Behav. Neurosci. 118: 798–804. https://doi.org/10.1037/0735-7044.118.4.798

KIYOKAWA Y, Takeuchi Y, Mori Y. 2007. Two types of social buffering differentially mitigate conditioned fear responses. Eur. J. Neurosci. 26: 3606–3613. https://doi.org/10.1111/j.1460-9568.2007.05969.x

KIYOKAWA Y, Takeuchi Y, Nishihara M, Mori Y. 2009. Main olfactory system mediates social buffering of conditioned fear responses in male rats. Eur. J. Neurosci. 29: 777–785. https://doi.org/10.1111/j.1460-9568.2009.06618.x

LEES AM, Salvin HE, Colditz IG, Lee C. 2020. The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle. Animals. 10: 172. https://doi.org/10.3390/ani10010172

LKHAGVASUREN B, Oka T. 2017. The histaminergic system is involved in psychological stress-induced hyperthermia in rats. Physiol. Rep. 5: e13204. https://doi.org/10.14814/phy2.13204

MIYAMOTO T, Funakami Y, Kawashita E, Nomura A, Sugimoto N, Saeki H, Tsubota M, Ichida S, Kawabata A. 2017a. Repeated Cold Stress Enhances the Acute Restraint Stress-Induced Hyperthermia in Mice. Biol. Pharm. Bull. 40: 11–16. https://doi.org/10.1248/bpb.b16-00343

MIYAMOTO T, Funakami Y, Kawashita E, Tomita S, Nomura A, Sugimoto N, Saeki H, Miyazakia T, Tsubota M, Ichida S, Kawabata A. 2017b. Enhanced Hyperthermic Responses to Lipopolysaccharide in Mice Exposed to Repeated Cold Stress. Pharmacology. 99: 172–178. https://doi.org/10.1159/000454815

MORRISON SF. 2011. Central neural pathways for thermoregulation. Front. Biosci. 16: 74. https://doi.org/10.2741/3677

MORRISON SF, Nakamura K. 2011. Central neural pathways for thermoregulation. Front. Biosci. 16: 74-104. https://doi.org/10.2741/3677

MOTA‐ROJAS D, Olmos‐Hernández A, Verduzco‐Mendoza A, Lecona‐Butrón H, Martínez‐Burnes J, Mora‐Medina P, Gómez‐Prado J, Orihuela A. 2020. Infrared thermal imaging associated with pain in laboratory animals. Exp. Anim. 70: 20‐0052. https://doi:10.1538/expanim.20‐0052

NAKAMURA K, 2015. Neural circuit for psychological stress-induced hyperthermia. Temperature. 2: 352–361. https://doi.org/10.1080/23328940.2015.1070944

NAKAMURA K. 2004. Identification of Sympathetic Premotor Neurons in Medullary Raphe Regions Mediating Fever and Other Thermoregulatory Functions. J. Neurosci. 24: 5370–5380. https://doi.org/10.1523/JNEUROSCI.1219-04.2004

NAKAMURA K, Matsumura K, Kobayashi S, Kaneko T. 2005. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci. Res. 51: 1–8. https://doi.org/10.1016/j.neures.2004.09.007

OKA T. 2018. Stress-induced hyperthermia and hypothermia. pp. 599–621. https://doi.org/10.1016/B978-0-444-64074-1.00035-5

OKA T, Oka K, Hori T. 2001. Mechanisms and Mediators of Psychological Stress-Induced Rise in Core Temperature. Psychosom. Med. 63: 476–486. https://doi.org/10.1097/00006842-200105000-00018

OLIVIER B, Zethof T, Pattij T, Van Boogaert M, Van Oorschot R, Leahy C, Oosting R, Bouwknecht A, Veening J, Van der Gugten J, Groenink L. 2003. Stress-induced hyperthermia and anxiety: pharmacological validation. Eur. J. Pharmacol. 463: 117–132. https://doi.org/10.1016/S0014-2999(03)01326-8

OOTSUKA Y, Blessing WW, Nalivaiko E. 2008. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress. 11: 125–133. https://doi.org/10.1080/10253890701638303

ROSINGER ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. 2017. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience. 361: 167–178. https://doi.org/10.1016/j.neuroscience.2017.08.016

RYGULA R, Abumaria N, Havemann-Reinecke U, Rüther E, Hiemke C, Zernig G, Fuchs E, Flügge G. 2008. Pharmacological validation of a chronic social stress model of depression in rats: effects of reboxetine, haloperidol and diazepam. Behav. Pharmacol. 19: 183–196. https://doi.org/10.1097/FBP.0b013e3282fe8871

SANCHEZ-ALAVEZ M, Tabarean IV, Behrens MM, Bartfai T. 2006. Ceramide mediates the rapid phase of febrile response to IL-1beta. Proc. Natl. Acad. Sci. 103: 2904–2908. https://doi.org/10.1073/pnas.0510960103

SAPER CB, Romanovsky AA, Scammell TE. 2012. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat. Neurosci. 15: 1088–1095. https://doi.org/10.1038/nn.3159

SCHORTGEN F. 2012. Fever in sepsis. Minerva Anestesiol. 78: 1254–64. https://www.minervamedica.it/en/journals/minerva-anestesiologica/article.php?cod=R02Y2012N11A1254

SONG K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, Wende H, Siemens J. 2016. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science. 353(6306): 1393-1398. https://doi.org/10.1126/science.aaf7537

STORNETTA RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG. 2005. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J. Comp. Neurol. 492: 477–494. https://doi.org/10.1002/cne.20742

TAKAHASHI LK. 2014. Olfactory systems and neural circuits that modulate predator odor fear. Front. Behav. Neurosci. 8. https://doi.org/10.3389/fnbeh.2014.00072

THOMPSON RS, Strong PV, Fleshner M. 2012. Physiological Consequences of Repeated Exposures to Conditioned Fear. Behav. Sci. (Basel). 2: 57–78. https://doi.org/10.3390/bs2020057

VEENING JG, Bouwknecht JA, Joosten HJJ, Dederen PJ, Zethof TJJ, Groenink L, Van der Gugten J, Olivier B. 2004. Stress-induced hyperthermia in the mouse: c-fos expression, corticosterone and temperature changes. Prog. Neuro-Psychopharmacology Biol. Psychiatry 28: 699–707. https://doi.org/10.1016/j.pnpbp.2004.05.007

VILLANUEVA-GARCÍA D, Mota-Rojas D, Martínez-Burnes J, Olmos-Hernández A, Boscato L, Gomez J, González LM. Hypothermia in newly born piglets: mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2020(8):2101. https://doi.org/10.31893/jabb.21001

VINKERS CH, Groenink L, Van Bogaert MJV, Westphal KGC, Kalkman CJ, Van Oorschot R, Oosting RS, Olivier B, Korte SM. 2009. Stress-induced hyperthermia and infection-induced fever: Two of a kind?. Physiol. Behav. 98: 37–43. https://doi.org/10.1016/j.physbeh.2009.04.004

VINKERS CH, Olivier B, Bouwknecht JA, Groenink L, Olivier JDA. 2010. Stress-induced hyperthermia, the serotonin system and anxiety. Open Pharmacol. J. 4: 15–29. https://benthamopen.com/contents/pdf/TOPHARMJ/TOPHARMJ-4-15.pdf

WALTER EJ, Hanna-Jumma S, Carraretto M, Forni L. 2016. The pathophysiological basis and consequences of fever. Crit. Care. 20: 200. https://doi.org/10.1186/s13054-016-1375-5

WANG TA, Teo CF, Åkerblom M, Chen C, Tynan-La Fontaine M, Greiner VJ, Diaz A, McManus MT, Jan YN, Jan LY. 2019. Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron. 103: 309-322. E7. http://doi.org/10.1016/j.neuron.2019.04.035

WANG L, Liu F, Luo Y, Zhu L, Li G. 2015. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Reports. 3: 425–429. https://doi.org/10.3892/br.2015.445

WATANABE S. 2015. Social factors modulate restraint stress induced hyperthermia in mice. Brain Res. 1624: 134–139. https://doi.org/10.1016/j.brainres.2015.07.019

WELLMAN LL, Fitzpatrick ME, Hallum OY, Sutton AM, Williams BL, Sanford LD. 2016. Individual Differences in Animal Stress Models: Considering Resilience, Vulnerability, and the Amygdala in Mediating the Effects of Stress and Conditioned Fear on Sleep. Sleep. 39: 1293–1303. https://doi.org/10.5665/sleep.5856

YARIBEYGI H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. 2017. The impact of stress on body function: A review. Excli J. 16: 1057–1072. https://doi.org/10.17179/excli2017-480

YOUNG PJ, Saxena M. 2014. Fever management in intensive care patients with infections. Crit. Care. 18: 206. https://doi.org/10.1186/cc13773

ZHANG W, Sunanaga J, Takahashi Y, Mori T, Sakurai T, Kanmura Y, Kuwaki T. 2010. Orexin neurons are indispensable for stress-induced thermogenesis in mice. J. Physiol. 588: 4117–4129. https://doi.org/10.1113/jphysiol.2010.195099

Enlaces refback

  • No hay ningún enlace refback.