Empleo de ácidos orgánicos en el agua de bebida y su efecto en el desempeño productivo en pollos de engorda

José Arce-Menocal, Martín Roa-Flores, Carlos López-Coello, Ernesto Ávila-González, José Herrera-Camacho, Arturo Cortes-Cuevas

Resumen

Se evaluó el empleo de ácidos orgánicos (AO) en el agua de bebida en pollo de 1 a 42 días de edad en el desempeño productivo, salud intestinal, pH, morfología digestiva, pH sanguíneo, resistencia de yeyuno (RY) y pigmentación de piel (PP). Se utilizaron 1080 pollos distribuidos en tres tratamientos con nueve repeticiones de 40 aves: Los tratamientos fueron: Uso de agua de bebida sin acidificar (pH 8) grupo testigo (T1), acidificación con una mezcla AO (ácido fórmico 31%, ácido propiónico 19%, formato de amonio 26% y propionato de amonio 6%) en dosis de 1.0 L/1000 L de agua (T2) para obtener un pH de 4 y 0.3 L/1000 L de agua (T3) para un pH de 6. Los resultados mostraron (p≤ 0.01) mayor peso corporal, menor consumo de alimento y mejor eficiencia alimenticia, para las aves del T3. No existieron diferencias (p≥ 0.05) en los valores del pH digestivo, PP y morfología intestinal; únicamente mostraron efectos (p≤ 0.01) en el ancho de vellosidades y en el área digestiva. El pH sanguíneo y la RY, mostraron efectos (p≤0.01) entre los tratamientos. Se concluye que la acidificación en el agua de bebida en pollos de engorda, con la mezcla AO en 0.3 L/1000 L es suficiente para lograr un mejor desempeño productivo.

Palabras clave

pollo de engorda; ácidos orgánicos; rendimiento productivo

Referencias

ADHIKARI P, Yadav S, Cosby DE, Cox NA, Jendza JA, Kim WK. 2020. Research Note: Effect of organic acid mixture on growth performance and Salmonella Typhimurium colonization in broiler chickens. Poultry Science. 99(5):2645-2649. https://doi.org/10.1016/j.psj.2019.12.037

ADIL S, Banday T, Bhat GA, Salahuddin M, Raquib M, Shanaz S. 2011 Response of broiler chicken to dietary supplementation of organic acids. Journal of Central European Agriculture. 12(3):498-508. ISSN: 1330-7142. https://doi.org/10.5513/JCEA01/12.3.947

AL-MUTAIRI HMS, Hussein EOS, El Nabi AR, Swelum AA, El-Hack MEA, Taha AE, Al-Mufarrej SI. 2020. Does the Consumption of Acidified Drinking Water Affect Growth Performance and Lymphoid Organs of Broilers?. Sustainability. 12(8): 3093; https://doi.org/10.3390/su12083093

ANGEL R, Kim SW, Li W, Jimenez-Moreno E. 2013. Velocidad de paso y pH intestinal. Madrid; Memorias del XXIX Curso de Especialización FEDNA. España.

ARAUJO RGAC, Polycarpo GV, Barbieri A, Silva KM, Ventura G, Polycarpo VCC. 2018. Performance and economic viability of broiler chickens fed with probiotic and organic acids in an attempt to replace Growth-Promoting Antibiotics. Brazilian Journal of Poultry Science. 21(2): 1-8. http://dx.doi.org/10.1590/1806-9061-2018-0912

AVILA E. 2018. “Alimentación avícola y del pollos de engorda”. En Ávila GE. Introducción a la zootecnia del pollo y la gallina. CDMX, México: Universidad Nacional Autónoma de México. 468 p. ISBN 978-607-02-9855-4.

BOROOJENI FG, Vahjen W, Mader A, Knorr F, Ruhnke I, Röhe I, Hafeez A, Villodre C, Männer K, Zentek J. 2014. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers. Poultry Science. 93: 1440-1452. https://doi.org/10.3382/ps.2013-03563

BOURASSA DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. 2018. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca1. Poultry Science. 97(1): 64-73. https://doi.org/10.3382/ps/pex289

BROOM LJ. 2015. Organic acids for improving intestinal health of poultry. World's Poultry Science Journal. 71(4), 630-642. https://doi.org/10.1017/S0043933915002391

BROWN WH.2002. Química Orgánica. 2ª ed. Ciudad de México, México: ed. Patria. Pp. 313-320. ISBN 9789702602088.

CUCA GM, Ávila GE, Pro MA. 2009. “ La alimentación aviar es crítica”. En Cuca GM. Alimentación de las aves. Edo. México, México: Universidad Autónoma de Chapingo. Pp.10. ISBN: 978-607-12-0038-9.

DIBNER J, Buttin P. 2002. Use of organic acid as a model to study the impact of gut microflora on nutrition and metabolism. Applied Poultry Research. 11:453-463. ISSN: 1056-6171. https://doi.org/10.1093/japr/11.4.453

EMAMI NK, Daneshmand A, Naeini ZS, Graystone EN, Broom LJ. 2017. Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poultry Science. 96(9); 3254-3263. https://doi.org/10.3382/ps/pex106

FREITAG M. 2007. Organic acids and salts promote performance and health in animal husbandry. Christian Lücktädt Editor, Acidifiers in Animal Nutrition 1st ed. United Kingdom. Nottingham University Press. Pp.1-7. ISBN-13:978-1904761402.

GARCÍA V, Catalá-Gregory P, Hernandez F, Megías M, Madrid J. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology and meat yield broilers. Journal Applied Poultry Research. 16(4): 555-562. ISSN: 1056-6171. https://doi.org/10.3382/japr.2006-00116

GHULAM A, Sohail HK, Habibub-ur R. 2013. Effects of formic acid administration in the drinking water on production performance, egg quality and immune system in the layers during hot season. Avian Biology Research. 6(3):227-232. ISSN: 1758-1567. https://doi.org/10.3184/175815513X13740707043279

IMMERSEEL V, Russell J B, Flythe MD, Gantois I, Timbermont L, Pasmans F, Ducatelle R. 2006. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathology. 35(3):182-188. ISSN: 0307-9457. https://doi.org/10.1080/03079450600711045

JIN LZ, Ho YW, Abdullah N, Jalaludin S. 1998. Acid and bile tolerance of lactobacillus isolated from chicken intestine. Letter Applied Microbiology. 27(3):183-185. ISSN: 3255-8254. https://doi.org/10.1046/j.1472-765X.1998.00405.x

KHAN HS, Iqbal J. 2016. Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research. 44(1):359-369. http://dx.doi.org/10.1080/09712119.2015.1079527

KIM MH, Kang SG, Park JH, Yanagisawa M, Kim CH. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145(2):6-406. ISSN: 0016-5085. https://doi.org/10.1053/j.gastro.2013.04.056

MAISONNIER S, Gomez J, Brée C, Baeza E, Carré B. 2003. Effects of microflora status, dietary bile salts and guar gum on lipid digestibility, intestinal bile salts and histomorphology in broiler chickens. Poultry Science. 82(5):805-814. ISSN: 0032-5791. https://doi.org/10.1093/ps/82.5.805

MEIMANDIOPUR A, Soleimanifarjam A, Azhar A, Hair-Bejo K, Shuhaimi M, Nateghi M, Yazid AM. 2011. Age Effect on short chain fatty acids concentrations and pH values in the gastrointestinal tract of broiler chicken. Archiv Fur Geflugelkunde. 75(3):164-168. ISSN: 0003-9098. https://www.european-poultry-science.com/Age-effects-on-short-chain-fatty-acids-concentrations-and-pH-values-in-the-gastrointestinal-tract-of-broiler-chickens,QUlEPTQyMjAxMzcmTUlEPTE2MTAxNA.html

MESCHY F. Balance Electrolítico y Productividad en Animales. XIV Curso de Especialización: Avances en nutrición y Alimentación animal, FEDNA España. 95-108 p. http://www.fundacionfedna.org/publicaciones_1998

MORTADA M, Cosby DE, Shanmugasundaram R, Selvaraj RK. 2020. In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. Journal of Applied Poultry Research. 29(2): 435-446. https://doi.org/10.1016/j.japr.2020.02.001

Municipio de Charo. 2020. Medio físico del municipio de Charo, Michoacán. https://www.charo.gob.mx/tu-municipio/medio-fisico. Consultado en 2020.

NAKAI S, Siebert K. 2003. Validation of bacterial growth inhibition models based on molecular properties of organic acids. International Journal Food Microbiology. 86(3):1-7. https://doi.org/10.1016/S0168-1605(02)00551-2

NGUYEN GH, Lee KY, Mohammadigheisar M, Kim IH. 2018. Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Science. 97(12): 4351-4358. https://doi.org/10.3382/ps/pey339

NOM-033-ZOO-1995. 1995. Sacrificio humanitario de los Animales. Domésticos y Silvestres. Diario Oficial de la Federación, Inciso 7.4.2.2. http://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015

NOURMOHAMMADI R, Afzali N. 2013. Effect of citric acid and microbial phytase on small intestinal morphology. Italian Journal Animal Science. 12(1):44-47. ISSN: 1828-051X. https://doi.org/10.4081/ijas.2013.e7

POLYCARPO GV, Andretta I, Kipper M, Cruz-Polycarpo VC, Dadalt JC, Rodrigues PHM, Albuqueque R. 2017. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poultry Science. 96(10): 3645-3653. https://doi.org/10.3382/ps/pex178

RAFACZ-LIVINGTON KA, Parsons CM, Jungkt RA. 2005. The effects of various organic acids on phytate phosphorus utilization in chicks. Poultry Science. 84(9):1356-1362. ISSN: 0032-5791. https://doi.org/10.1093/ps/84.9.1356

RICKE S. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science. 82:632-639. ISNN:0032-5791, https://doi.org/10.1093/ps/82.4.632

ROTH N, Hofacre C, Zitz U, Mathis GF, Molder K, Doupovec B, Berghouse, Doming KJ. 2019. Prevalence of antibiotic-resistant E. coli in broilers challenged with a multi-resistant E. coli strain and received ampicillin, an organic acid-based feed additive or a synbiotic preparation. Poultry Science. 98(6): 2598-2607. https://doi.org/10.3382/ps/pez004

ROTH N, Mayrhofer S, Gierus M, Weingut C, Schwarz, Doupovec B, Berrios R, Domig JK. 2017. Effect of an organic acids-based feed additive and enrofloxacin on the prevalence of antibiotic-resistant E. coli in cecum of broilers. Poultry Science. 96(11):4053-4060. https://doi.org/10.3382/ps/pex232

SÁNCHEZ-HERRERA I, Posadas HE, Sánchez RE, Fuente MB, Hernández EJ, Laparra

VJL, Avila GE. 2009. Efecto del butirato de sodio en dietas para gallinas sobre el comportamiento productivo, calidad del huevo y vellosidades intestinales. Veterinaria México. 40(4):397-403. ISSN: 0301-5092.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0301-50922009000400006

SAS Institute. 2010. Statistical Analyses Software. SAS/STAT® version 9.0.2, Cary, N.C., USA: SAS Institute Inc., ISBN: 978-1-60764-599-3. http://www.sas.com/en_us/software/analytics/stat.html#

SMITH JA. 2011. Experiences with drug-free broiler production. Poultry Science. 90:2670-2678. ISSN:0032-5791. https://doi.org/10.3382/ps.2010-01032

WHITTOW G. 2000. Sturkie´s Avian Physiology. 5th ed. San Diego, California: Ed. Academic Press. Pp. 298. ISBN: 9780127476056

YAMAUCHI K. 2007. Review of a histological intestinal approach to assesing the intestinal function in chickens and pigs. Animal Science Journal. 78(4):356-370. ISSN: 1525-3163. https://doi.org/10.1111/j.1740-0929.2007.00448.x

YANG X, Liu Y, Yan F, Yang C, Yang X. 2019. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poultry Science. 98(7): 2858-2865. https://doi.org/10.3382/ps/pez031

Enlaces refback

  • No hay ningún enlace refback.