Antihiperglucémico, antihiperlipidémico y cicatrización de heridas de Boswellia serrata en ratas diabéticas inducidas experimentalmente

Namjou Abdolrasoul, Rouhi-Broujeni Hojjat

Resumen

La diabetes mellitus es un trastorno metabólico con complicaciones como el síndrome metabólico y la cicatrización lenta de las heridas. En este estudio experimental, treinta y seis ratas Wistar machos se dividieron al azar en tres grupos: control, diabéticas y las tratadas con extracto diabético. Veinticuatro horas después de habérseles producido la herida a las ratas del grupo diabético tratadas con la crema tópica B. serrata al 2.5%, también se les administró extracto de serrata acuoso B. (400 mg/Kg) vía sonda oral por tres semanas. A las ratas se les indujo la diabetes por medio de una inyección subcutánea de monohidrato de aloxano (120mg/Kg). Luego de estar anestesiadas, se les removió el espesor total de la piel dorsal (25mm x 25mm). En los días 4, 7, 14 y 21 se recogieron muestras de las heridas para evaluar la curación histopatológica de la mismas. Al culminarse los tratamientos, se recogieron muestras de sangre para medir los factores bioquímicos. El consumo de B. extracto de serrata en el grupo diabético redujo significativamente la glucosa, las enzimas hepáticas, los indicadores renales y el perfil lipídico, en comparación con el grupo de control diabético (P < 0.05). Estudios histopatológicos mostraron que la tasa de formación de fibras de colágeno y tejido epiteleal, así como la de cicatrización de heridas, fue más alta en el grupo tratado con B. serralta que en los grupos diabéticos. Por lo tanto, puede ser útil en pacientes diabéticos, especialmente aquellos con heridas.

Palabras clave

Boswellia serrata; aloxano; úlcera diabética; glucosa; cicatrización; rata

Referencias

AHANGARPOUR A, Heidari H, Fatemeh RA, Pakmehr M, Shahbazian H, Ahmadi I, Mombeini Z, Mehrangiz BH. 2014. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients. Journal of diabetes and metabolic disorders. 13(1):29. ISSN 2008-1820. https://doi.org/10.1186/2251-6581-13-29

AL-HARRASI A, Al-saidi S. 2008. Phytochemical analysis of the essential oil from botanically certified oleogum resin of Boswellia sacra (Omani Luban). Molecules. 13(9): 2181-2189. https://doi.org/10.3390/molecules13092181

AMMON HP. Boswellic acids in chronic inflammatory diseases. 2006. Planta medica. 72:1100-1116. https://doi.org/10.1055/s-2006-947227

ASSIMOPOULOU AN, Zlatanos SN, Papageorgiou VP. 2005. Antioxidant activity of natural resins and bioactive triterpenes in oil substrate. Food Chemistry. 92(4): 721-727. https://doi.org/10.1016/j.foodchem.2004.08.033

BAIRD MF, Graham SM, Baker JS, Bickerstaff GF.2012. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of nutrition and metabolism. 2012:960363. https://doi.org/10.1155/2012/960363

BEHESHTI S, Ghorbanpour Skakakomi A, Ghaedi K, Dehestani H. 2018. Frankincense upregulates the hippocampal calcium/calmodulin kinase II-α during development of the rat brain and improves memory performance. International journal of developmental neuroscience. 69(1):44-48.

https://doi.org/10.1016/j.ijdevneu.2018.06.011

BERTOCCHI M, Isani G, Medici F, Andreani G, Tubon Usca I, Roncada P, Forni M, Bernardini C. 2018. Anti-Inflammatory Activity of Boswellia serrata Extracts: An In Vitro Study on Porcine Aortic Endothelial Cells. Oxidative medicine and cellular longevity. https://doi.org/10.1155/2018/2504305

BHAWALl UK, Yoshida K, Kurita T, Suzuki M, Okada Y, Tewari N, Oka S, Kuboyama N, Hiratsuka K. 2019. Effects of 830 nm low-power laser irradiation on body weight gain and inflammatory cytokines in experimental diabetes in different animal models. Laser therapy. 28(4):257-265. https://doi.org/10.5978/islsm.19-OR-17

BORRELLI F, Capasso F, Capasso R, Ascione V, Aviello G, Longo R, Izzo AA. 2006. Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhoea without constipation. British journal of pharmacology. 148(4):553-560. https://doi.org/10.1038/sj.bjp.0706740

CHAO M, Zou D, Zhang Y, Chen Y, Wang M, Wu H, Ning G, Wang W. 2009. Improving insulin resistance with traditional Chinese medicine in type 2 diabetic patients. Endocrine. 36(2):268-274. https://doi.org/10.1007/s12020-009-9222-y

DRA LA, Sellami S, Rais H, Aziz F, Aghraz A, Bekkouche K, Markouk M, Larhsini M. 2018. Antidiabetic potential of Caralluma europaea against alloxan-induced diabetes in mice. Saudi journal of biological sciences. 26(6):1171-1178. https://doi.org/10.1016/j.sjbs.2018.05.028

ELSNER M, Gurgul-Convey E, Lenzen S. 2006. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free radical biology and medicine. 41(5):825-834. https://doi.org/10.1016/j.freeradbiomed.2006.06.002

FISMAN EZ, Tenenbaum A. 2009 A cardiologic approach to non-insulin antidiabetic pharmacotherapy in patients with heart disease. Cardiovascular diabetology. 20(8):38. https://doi.org/10.1186/1475-2840-8-38

GOMEZ-PEREZ FJ, Aguilar-Salinas CA, Almeda-Valdes P, Cuevas-Ramos D, Lerman Garber I, Rull JA. 2010. HbA1c for the diagnosis of diabetes mellitus in a developing country. Archives of medical research. 41(4):302-308. https://doi.org/10.1016/j.arcmed.2010.05.007

GOMAA AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. 2019. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 27(3):549-559. https://doi.org/10.1007/s10787-018-0519-4

GLASTRAS SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA, Wong MG, Saad S. 2016. Mouse models of diabetes, obesity and related kidney disease. PloS one. 11(8):e0162131. https://doi.org/10.1371/journal.pone.0162131

HAMIDPOUR R, Hamidpour S, Hamidpour M, Shahlari M. 2013. Frankincense ( rǔ xiāng; boswellia species): from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J Tradit Complement Med. 3(4): 221-6. https://doi.org/10.4103/2225-4110.119723

JALILI C, Salahshoor MR, Pourmotabbed A, Moradi S, Roshankhah Sh, Darehdori AS, Motaghi M. 2014.The effects of aqueous extract of Boswellia serrata on hippocampal region CA1 and learning deficit in kindled rats. Research in pharmaceutical sciences. 9(5):351-358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318003/

JYOTHI Y, Kamath JV, Asad M. 2006. Effect of hexane extract of Boswellia serrata oleo-gum resin on chemically induced liver damage. Park J Pharm. Sci. 19(2):129-133. https://pubmed.ncbi.nlm.nih.gov/16751123/

KOEBERIE A, Henkel A, Verhoff M, Tausch L, Konig S, Fischer D, Kather N, Seitz S, Paul M, Jauch J, Werz O. 2018. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G. Molecules. 23(2). https://doi.org/10.3390/molecules23020506

KOMESU MC, Tanga MB, Buttros KR, Nakao C. 2004. Effects of acute diabetes on rat cutaneous wound healing. Pathophysiology. 11(2):63-67. https://doi.org/10.1016/j.pathophys

KUMAR R, Singh S, Saksena AK, Pal R, Jaiswal R, Kumar R. 2019. Effect of Boswellia Serrata Extract on Acute Inflammatory Parameters and Tumor Necrosis Factor-α in Complete Freund's Adjuvant-Induced Animal Model of Rheumatoid Arthritis. International journal of applied & basic medical research. 9(2):100-106. https://doi.org/10.4103/ijabmr.IJABMR_248_18

LEE YH, Chang JJ, Chien CT, Yang MC, Chien HF.CHANG JJ., CHIEN CT., YANG MC., CHIEN HF.2012. Antioxidant sol-gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Experimental diabetes research. 2012:504693. https://doi.org/10.1155/2012/504693

LERMAN OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. 2003. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. The American journal of pathology. 162(1):303-312. https://doi.org/10.1016/S0002-9440(10)63821-7

LODHI S, Singhai AK. 2013. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn on streptozotocin induced diabetic rats. Asian Pacific journal of tropical medicine. 6(4):253-259. https://doi.org/10.1016/S1995-7645(13)60053-X

MEHRZADI S, Tavakolifar B, Huseini HF, Mosavat SH, Heydari M. 2018. The Effects of Boswellia serrata Gum Resin on the Blood Glucose and Lipid Profile of Diabetic Patients: A Double-Blind Randomized Placebo-Controlled Clinical Trial. Journal of evidence-based integrative medicine. 2515690X18772728. https://doi.org/10.1177/2515690X18772728

MENTREDDY SR. 2007. Medicinal plant species with potential antidiabetic properties. Journal of the Science of Food and Agriculture. 87(5): 743–750. https://doi.org/10.1002/jsfa.2811

MIAO XD, Zheng LJ, Zhao ZZ, Su SL, Zhu Y, Guo JM, Shang EX, Qian DW, Duan JA. 2019. Protective Effect and Mechanism of Boswellic Acid and Myrrha esquiterpenes with Different Proportions of Compatibility on Neuroinflammation by LPS-Induced BV2 Cells Combined with Network Pharmacology. Molecules. 24(21). pii: E3946. https://doi.org/10.3390/molecules24213946

MOSTAFAVINIA A, Amini A, Ghorishi SK, Pouriran R, Bayat M. 2016. The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in rats. Laboratory animal research. 32(3):160-165. https://doi.org/10.5625/lar.2016.32.3.160

NAMJOU A, Heidarian E, Rafieian-Kopaei M. 2018. Effects of Urtica dioica hydro-alcoholic extract on blood serum glucose and lipid profiles of female Wistar rats with long-term estrogen deficiency. Veterinary research forum. 9(4):349-355. https://doi.org/10.30466/vrf.2018.33079

NOURBAKHSH SMK, Rouhi-Boroujeni H, Kheiri M, Mobasheri M, Shirani M, Ahrani S, Karami J, Hafshejani ZK. 2016. Effect of topical application of the cream containing magnesium 2% on treatment of diaper dermatitis and diaper rash in children a clinical trial study. Journal of clinical and diagnostic research. 10(1):WC04-6. https://doi.org/10.7860/JCDR/2016/14997.7143

OTHMAN ZA, Wan Ghazali WS, Noordin L, Mohd Yusof NA, Mohamed M.2019. Phenolic Compounds and the Anti-Atherogenic Effect of Bee Bread in High-Fat Diet-Induced Obese Rats. Antioxidants. 9(1). pii: E33. https://doi.org/10.3390/antiox9010033

RAHATI S Eshraghian M, Ebrahimi A, Pishva H. 2016. Effect of Spinach aqueous extract on wound healing in experimental model diabetic rats with streptozotocin. Journal of the science of food and agriculture. 96(7):2337-43. https://doi.org/10.1002/jsfa.7349

RAJA AF, Ali F, Khan IA, Shawl AS, Arora DS. 2011. Acetyl-11- keto-b-boswellic acid (AKBA): Targeting oral cavity pathogens. BMC research notes. 4:406. https://doi.org/10.1186/1756-0500-4-406

RIKHI R, Singh T, Modaresi Esfeh J. 2020. Work up of fatty liver by primary care physicians, review. Annals of medicine and surgery. 50:41-48. https://doi.org/10.1016/j.amsu.2020.01.001

RODRIGUES GR., Di Naso FC, Porawski M, Marcolin E, Kretzmann NA, Ferraz Ade B, Richter MF, Marroni CA, Marroni NP. 2012. Treatment with aqueous extract from Croton cajucara benth reduces hepatic oxidative stress in streptozotocin-diabetic rats. Journal of biomedicine and biotechnology. 2012:902351. https://doi.org/10.1155/2012/902351

ROY NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. 2019. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. International journal of molecular sciences. 20(17). pii: E4101. https://doi.org/10.3390/ijms20174101

SCHMIECH M, Lang SJ, Ulrich J, Werner K, Rashan LJ, Syrovets T, Simmet T. 2019. Comparative investigation of frankincense nutraceuticals: Correlation of boswellic and lupeolic acid contents with cytokine release inhibition and toxicity against triple- negative breast cancer cells. Nutrients. 11(10). pii: E2341. https://doi.org/10.3390/nu11102341

SHARMA R, Singh S, Singh GD, Khajuria A, Sidiq T, Singh SK, Chashoo G, Pagoch SS, Kaul A, Saxena AK, Johri RK, Taneja SC. 2009. In vivo genotoxicity evaluation of a plant based antiarthritic and anticancer therapeutic agent Boswelic acids in rodents. Phytomedicine. 16(12):1112-8. https://doi.org/10.1016/j.phymed.2009.06.009

SHEHATA AM, Quintanilla-Fend L, Bettio S, Singh CB, Ammon HP. 2011. Prevention of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice by an extract from gum resin of Boswellia serrata (BE). Phytomedicine. 18(12):1037-44. https://doi.org/10.1016/j.phymed.2011.06.035

WU L, Parhofer KG. 2014. Diabetic dyslipidemia. Metabolism. 3(12):1469-79. PMID: 25242435. https://doi.org/10.1016/j.metabol.2014.08.010

YANG F, Cho WY, Lee N, Kim DH, Lee J, Lee HJ, Seo HG, Lee CH.2020. Effects of Boswellia Serrata and Whey Protein Powders on Physicochemical Properties of Pork Patties. Foods. 9(3). pii: E334. https://doi.org/10.3390/foods9030334

ZHANG Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, Xu X, Liu Y. 2013. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chemistry Central journal. 7(1):153. https://doi.org/10.1186/1752-153X-7-153

Enlaces refback

  • No hay ningún enlace refback.