Uso de extractos de plantas en la fermentación ruminal in vitro

Lucía Delgadillo-Ruiz, Rómulo Bañuelos-Valenzuela, Francisco Echavarría-Cháirez, Perla Ivonne Gallegos-Flores, Carlos Meza-López

Resumen

El objetivo de este trabajo fue obtener y caracterizar los extractos de Larrea tridentata, Origanum vulgare, Artemisa ludoviciana y Ruta graveolens para utilizarlos en la digestibilidad ruminal in vitro y cuantificar su producción de gas, ácidos grasos volátiles y de metano. Se determinó la composición química de los extractos por cromatografía de gases y para la producción de gas in vitro se utilizó fluido ruminal. La determinación de ácidos grasos volátiles se efectuó por cromatografía de gases. El metano se infirió con la concentración de ácidos grasos volátiles. Para la composición química se identificaron en los extractos los compuestos: terpineno, limoneno, linalool, timol y carvacrol. En la digestibilidad el que menor concentración de gas produjo a un volumen de 100 µL de extracto fue L. tridentata y el metano se reporta 1.4 veces más que el control de alfalfa (0.514 mL g-1). Para la concentración de 330 µL del extracto O. vulgaris, presentó inhibición de metano con respecto al control de alfalfa. Se concluye que el extracto cuatro de O. vulgaris fue el que presentó una mejor digestibilidad con respecto a la producción de gas, AGV (ácidos grasos volátiles) y menor concentración de metano con respecto al control.

Palabras clave

extractos de plantas; Ácidos grasos volátiles y Metano

Texto completo:

PDF PDF (English) XML-JATS

Referencias

AGARWAL N, Shekhar C, Kumar R, Chaudhary L, Kamra DN. 2009. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology. 148: 321-327. Doi: 10.1016/j.anifeedsci.2008.04.004

ALAYÓN GJA, Jiménez FG, Piñeiro VAT, Canul SJ, Albores MS, Villanueva LG, Nahed TJ, Ku V. 2018. Estrategias de mitigación de gases de efecto invernadero en la ganadería. Agroproductividad. 11: 9-15. http://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/112/100

ALEJOS FJI, Almaraz BI, Peralta OJJG, Sánchez SP, Soriano RR, Torres CMG. 2018. Consideraciones de bienestar animal en las estrategias para la disminución de la producción de metano entérico por rumiantes. Agroproductividad . 11: 57-63. ISSN: 2448-7546120

ALBADO PE, Sáez FG, Grabiel AS. 2001. Composición química y actividad antibacteriana del aceite esencial del Origanum vulgare (orégano). Medical Journal Herediana. 12(1): 16-19. ISSN: 1729-214X

BENCHAAR C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology. 145(1-4): 209-228. Doi:10.1016/j.anifeedsci.2007.04.014

BURT S. 2004. Essential oils: their antibacterial properties and potential applications in foods -a review. International Journal of Food Microbiology. 94(3): 223-253. Doi: 10.1016/j.ijfoodmicro.2004.03.022

CAI Y, Luo Q, Sol M, Corke H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life sciences. 74(17): 2157-2184. Doi: 10.1016/j.lfs.2003.09.047

COBELLIS G, Trabalza-Marinucci M, Yu Z. 2016. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment, 545, 556-568. Doi: 10.1016/j.scitotenv.2015.12.103

DE FEO V, De Simone F, Senatore F. 2002. Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry. 61(5): 573-578. Doi: 10.1016/S0031-9422(02)00284-4

DORMAN HJD, Deans SG. 2000. Animicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of applied microbiology. 88(2): 308-316. Doi: 10.1.1.838.5779&rep=rep1&type=pdf

ECKARD RJ, Grainger C, De Klein CAM. 2010. Options for the abatement of methane and nitrous oxide from ruminants’ production: a review. Livestock Science. 130: 47-56. Doi: 10.1016/j.livsci.2010.02.010

FRANCE J. 2005. “Volatile fatty acid production”. In Dijkstra J, Forbes JM, France J. Quantitative aspects of ruminant digestion and metabolism. 2nd edition. CABI Publishing. Pp. 157-175. USA. ISBN: 0 85199 8143

GALICIA JMM, López GSJ, Ávila SNY, Murialdo SE. 2017. Two-component system: a molecular dialogue between ruminal bacteria and feed particles (forage plants). Tropical and Subtropical Agroecosystems. 20(3). ISSN: 1870-0462

GERBER PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. 2013. Tackling Climate Change Through Livestock-A Global Assessment of Emissions and Mitigation Opportunities. Rome, Italy: FAO-Food and Agriculture Organization of the United Nations. http://www.fao.org/.../i3437e00.htm

GETACHEW G, Robinson PH, DePeters EJ, Taylor SJ, Gisi DD, Higginbotham GE, Riordan TJ. 2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Animal Feed Science and Technology . 123: 391-402. Doi: 10.1016/j.anifeedsci.2005.04.056

HOOK SE, Wright ADG, McBride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010: 1-11. Doi: 10.1155/2010/945785

HRISTOV AN, Oh J, Giallongo F, Frederick TW, Harper MT, Weeks HL, Branco AF, Moate PJ, Deighton MH, Williams SR, Kindermann M, Duval S. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences. 112(34): 10663-10668. Doi: 10.1073/pnas.1504124112.

JOHNSON DE, Branine M, Ward GM, Carinean B, Lodman D. 1991. The potential contribution of beef cattle methane to total global warning: Background information and perspective. In: Beef program report. The Department of Animal Science's USA. p. 8. http://afcerc.tamu.edu/publications/Publication-PDFs

KORDALI S, Cakir A, Mavi A, Kilic H, Yildirim A. 2005. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. Journal of agricultural and food chemistry. 53(3): 1408-1416. Doi: 10.1021/jf048429n

MCKAY DL, Blumberg JB. 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytotherapy research. 20(8): 619-633. Doi: 10.1002/ptr.1900

MOSS AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: Its contribution to global warming. Annales de zootechnie. 49(3): 231-253. Doi: 10.1051/animres:2000119

MOUMEN A, Azizi G, Chekroun KB, Baghour M. 2016. The effects of livestock methane emission on the global warming: a review. International Journal of Global Warming. 9: 229-253. Doi: 10.1504/IJGW.2016.074956

NEWTON J, Van VK. 2002. Seasonal patterns and controlling factors of primary production in Puget Sound’s central basin and Possession Sound, Washington State Department of Ecology, Environmental Assessment Program, Publication #02-03-059, Olympia, WA. 38p.

NRC (National Research Council). 2003. Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs (Natl Acad Press, Washington, DC). 286 p.

PATRA AK, Saxena J. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry . 71(11-12): 1198-1222. Doi: 10.1016/j.phytochem.2010.05.010

PATRA AK, Yu Z. 2014. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl Microbiol Biotechnol. 98:897-905. Doi: 10. 1007/s00253-013-4930-x .

POPOVA M, McGovern E, McCabe MS, Martin C, Doreau M, Arbre M, Meale SJ, Morgavi DP, Waters SM 2017. La capacidad estructural y funcional de la microbiota ruminal y cecal en el ganado en crecimiento no se vio afectada por la suplementación dietética de aceite de linaza y nitrato. Fronteras en microbiología, 8, 937. Doi: 10.3389/fmicb.2017.00937

RAVINDRA K, Kamra DN, Neeta A, Chaudhary LC. 2009. Effect of eucalyptus (Eucalyptus globules) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Nutrition and Feed Technology. 9(2): 237-243. ISSN: 0972-2963

SEJIAN V, Bhatta R, Soren NM, Malik PK, Ravindra JP, Prasad CS, Lal R. 2015. Introduction to Concepts of Climate Change Impact on Livestock and Its Adaptation and Mitigation. Climate Change Impact on Livestock: Adaptation and Mitigation. Doi: 10.1007/978-81-322-2265-1_1, Springer India, p 1-25.

TAPIO I, Snelling TJ, Strozzi F, Wallace RJ. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of animal science and biotechnology, 8(1), 7. Doi: 10.1186/s40104-017-0141-0

THEODOROU MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology . 48: 185-197. Doi: 10.1016/0377-8401(94)90171-6

WALLACE RJ. 2004. Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society. 63: 621-629. Doi: 10.1079/PNS2004393

WANG CJ, Wang SP, Zhou H. 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Animal Feed Science and Technology . 148(2-4): 157-166. Doi: 10.1016/j.anifeedsci.2008.03.008

ZHANG J, Shi H, Wang Y, Li S, Cao Z, Ji S, He Y, Zhang H. 2017. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers. Frontiers in microbiology, 8, 2206. Doi: 10.3389/fmicb.2017.02206

Enlaces refback

  • No hay ningún enlace refback.