Fermentación ruminal in vitro de follajes de Muntingia calabura y Bauhinia divaricata solos y combinados con Pennisetum sp

Autores/as

Palabras clave:

producción de gas, metano, metabolitos secundarios, arbóreas forrajeras, rumiantes

Resumen

El objetivo de este estudio fue evaluar las características de la fermentación ruminal de los follajes de Bauhinia divaricata y Muntingia calabura solos y combinados con Pennisetum sp. Se evaluaron cinco tratamientos: P=Pennisetum sp. (100%); Mc=M. calabura (100%); Bd= B. divaricata (100%); McP= M. calabura (30%)/Pennisetum sp. (70%), y BdP= B. divaricata (30%)/Pennisetum sp. (70%). Los tratamientos con la mayor degradabilidad in vitro de la materia seca (DMS) fueron P, BdP, McP y Bd (>50%) (P≤0.05). No hubo diferencias significativas (P>0.05) en la producción de gas (PG) entre los tratamientos Bd, BdP, McP y P; sin embargo, Mc produjo 35% menos gas (P≤0.05) que los demás tratamientos. Contrariamente, Mc produjo 153% más metano (CH4) que Bd (P≤0.05), siendo Bd y BdP los tratamientos con menor producción de CH4. No se observaron diferencias significativas (P>0.05) en la concentración de ácido grasos volátiles (AGV), excepto de ácido acético entre Mc y P con Bd, y de ácido isovalérico entre Mc y Bd (P≤0.05). En conclusión, el follaje de B. divaricata disminuyó la producción de CH4 y no afectó negativamente otras variables de fermentación ruminal, por lo que representa una alternativa alimenticia para reducir la metanogénesis ruminal de ganado en el trópico.

http://dx.doi.org/10.21929/abavet2022.22

https://www.youtube.com/watch?v=dNnxkdLbHUA

e2022-1

Citas

ALBORES-MORENO S, Alayón-Gamboa JA, Miranda-Romero LA, Jiménez-Ferrer G, Ku-Vera JC, Vargas-Villamil L. 2018. Nutritional composition, in vitro degradation and potential fermentations of tree species grazed by ruminants in secondary vegetation (acahual) of deciduous forest. The Journal of Animal & Plant Science. 28(5):1263-1275. ISSN: 2309-8694. http://www.thejaps.org.pk/docs/v-28-05/06.pdf

ANANTASOOK N, Wanapat M, Cherdthong A, Gunun P. 2013. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian Australasian Journal of Animal Science. 26(11): 1583–1591. ISSN: 1011-2367. https://doi.org/10.5713/ajas.2013.13182

AOAC (Association of Official Analytical Chemists). 2006. Official methods of analysis. 18. ed. Arlington, VA, USA: AOAC International. ISBN: 978-0-035584-77-6.

APAJALAHTI J, Vienola K, Raatikainen K, Holder V, Moran CA. 2019. Conversion of branched-chain amino acids to corresponding isoacids—an in vitro tool for estimating ruminal protein degradability. Frontiers in Veterinary Science. 6:311. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2019.00311

BODAS R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology. 176(1-4):78-93. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2012.07.010

BROUDISCOU L, Lassalas B. 2000. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reproduction Nutrition Development. 40(5):431-440. ISSN: 0926-5287. https://doi.org/10.1051/rnd:2000110

CAB-JIMÉNEZ FE, Ortega-Cerrilla ME, Quero-Carrillo AR, Enríquez-Quiroz JF, Vaquera-Huerta H, Carranco-Jauregui ME. 2018. Composición química y digestibilidad de algunos árboles tropicales forrajeros de Campeche, México. Revista Mexicana de Ciencias Agrícolas. 11:2199-2204. ISSN: 2007-9230.

https://doi.org/10.29312/remexca.v0i11.798

DELGADO DC, Galindo J, González R, González N, Scull I, Dihigo L, Cairo J, Aldama A I, Moreira O. 2012. Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: Studies conducted in Cuba. Tropical Animal Health and Production. 44(5):1097-1104. ISSN: 0049-4747. https://doi.org/10.1007/s11250-011-0045-5

ERWIN ES, Marco GJ, Emery EM. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science. 44(9):1768-1771. ISSN: 0022-0302. https://doi.org/10.3168/jds.S0022-0302(61)89956-6

FAO (Food and Agriculture Organization of the United Nations). 2017. Assessment of greenhouse gas emissions and mitigation potential. Global Livestock Environmental Assessment Model (GLEAM). https://www.fao.org/gleam/en/

GARCÍA E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Quinta edición. DF, México: Instituto de Geografía-Universidad Nacional Autónoma de México. ISBN: 970-32-1010-4.

http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1

GARNETT T. 2010. Livestock and climate change. En: D’Silva J, Webster J. The meat crisis: Developing more sustainable production and consumption. Londres, Reino Unido: Earthscan. Pp. 34-56. ISBN: 978-1-84407-902-5. https://doi.org/10.4324/9781315562032

GÓMEZ-FUENTES-GALINDO T, González-Rebeles C, López-Ortiz S, Ku-Vera JC, Albor-Pinto CDJ, Sangines-García JR. 2017. Dominancia, composición química-nutritiva de especies forrajeras y fitomasa potencial en una selva secundaria. Agricultura Sociedad y Desarrollo. 14(4):617. ISSN: 2594-0244. http://dx.doi.org/10.22231/asyd.v14i4.699

GUIL-GUERRERO JL, Ramos L, Moreno C, Zúñiga-Paredes JC, Carlosama-Yepez M, Ruales P. 2016. Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livestock Science. 189:32-49. ISSN: 1871-1413.

http://dx.doi.org/10.1016/j.livsci.2016.04.021

HAQUE MN. 2018. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology. 60(1):15. ISSN: 2055-0391. https://doi.org/10.1186/s40781-018-0175-7

HOOK SE, Wright ADG, McBride BW. 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea. 1(11). ISSN: 1472-3636.

https://doi.org/10.1155/2010/945785

JOHNSON KA, Johnson DE. 1995. Methane emissions from cattle. Journal of Animal Science. 73(8):2483-2492. ISSN: 0021-8812. https://doi.org/10.2527/1995.7382483x

KAMALAK A, Canbolat O, Gurbuz Y, Ozay O, Ozcan CO, Sakarya M. 2004. Chemical composition and in vitro gas production characteristics of several tannin containing tree leaves. Livestock Research for Rural Development. 16(6):60-67. ISSN: 0121-3784. http://www.lrrd.org/lrrd16/6/kama16044.htm

KHOLIF AE, Elghandour MMY, Rodríguez GB, Olafadehan OA, Salem AZM. 2017. Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. Journal of Cleaner Production. 142: 2649-2655. ISSN: 0959-6526. https://doi.org/10.1016/j.jclepro.2016.11.012

KONGVONGXAY S, Preston TR, Leng RA, Khang DN. 2011. Effect of a tannin-rich foliage (Mimosa pigra) on feed intake, digestibility, N retention and methane production in goats fed a basal diet of Muntingia calabura. Livestock Research for Rural Development. 23. ISSN: 0121-3784. http://www.lrrd.org/lrrd23/3/sito23048.htm

LAKHANI N, Lakhani P. 2018. Plant secondary metabolites as a potential source to inhibit methane production and improve animal performance. International Journal of Chemical Studies. 6(3):3375-3379. ISSN: 2321-4902.

https://www.chemijournal.com/archives/2018/vol6issue3/PartAW/6-3-425-872.pdf

MEALE SJ, Chaves AV, Baah J, McAllister TA. 2012. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Australasian Journal of Animal Sciences. 25(1):86-91. ISSN: 1011-2367. https://doi.org/10.5713/ajas.2011.11249

MENKE KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science. 93(1): 217-222. ISSN: 0021-8596.

https://doi.org/10.1017/S0021859600086305

MOLINA IC, Donneys G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R. 2015. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development. 27(5):96. ISSN: 0121-3784.

http://www.lrrd.org/lrrd27/5/moli27096.html

ONU (Organización de la Naciones Unidas). 2019. Población.

https://www.un.org/es/sections/issues-depth/population/index.html

PANG Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. 2021. Linking plant secondary metabolites and plant microbiomes: A review. Frontiers in Plant Science. 12:621276. ISSN: 1664-462X. https://doi.org/10.3389/fpls.2021.621276

PATRA A, Park T, Kim M, Yu Z. 2017. Rumen Methanogens and Mitigation of Methane Emission by Anti-Methanogenic Compounds and Substances. Journal of Animal Science and Biotechnology. 8(1): 13. ISSN: 2049-1891. https://doi.org/10.1186/s40104-017-0145-9

PEREIRA GA, Arruda HS, de Morais DR, Eberlin MN, Pastore GM. 2018. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Research International. 108:264-273. ISSN: 0963-9969. https://doi.org/10.1016/j.foodres.2018.03.046

PUJANINGSIH RI, Sulistiyanto B, Sumarsih S. 2018. Observation of Muntingia calabura’s leaf extract as feed additive for livestock diet. IOP Conference Series: Earth and Environmental Science. 119:12-19. ISSN: 1755-1307. https://doi.org/10.1088/1755-1315/119/1/012019

PUSPITANING IR. 2012. Protozoal population and rumen fermentation characteristics of diet with Muntingia calabura leaves addition in vitro [Licenciatura, Institut Pertanian Borgor]. https://123dok.com/document/1y9mm8jq-protozoal-population-fermentation-characteristics-muntingia-calabura-leaves-addition.html

RIVERA JE, Chará J, Gomez-Leyva JF, Ruíz T, Barahona R. 2018. Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development. 30(12). ISSN: 0121-3784. http://www.lrrd.org/lrrd30/12/rive30200.html

RIVERA JE, Molina IC, Donneys G, Villegas G, Chará J, Barahona R. 2015. Dinámica de fermentación y producción in vitro de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development. 27(4):1-15. ISSN: 0121-3784. http://www.lrrd.org/lrrd25/1/phon25015.htm

ROEHE R, Dewhurst RJ, Duthie CA, Rooke JA, McKain N, Ross DW, Hyslop JJ, Waterhouse A, Freeman TC, Watson M, Wallace RJ. 2016. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLOS Genetics. 12(2): e1005846. ISSN: 1553-7404.

https://doi.org/10.1371/journal.pgen.1005846

SAS Institute. 2004. Statistical Analysis Software SAS/STAT®. version 9.1, Cary, N.C., USA: SAS Institute Inc., ISBN: 978-1-59047-243-9.

http://www.sas.com/en_us/software/analytics/stat.html#

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. 1999. Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. NOM-062-ZOO-1999, México: Diario Oficial de la Federación.

https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_ 220801.pdf

SILIVONG P, Hervasen B, Preston TR. 2013. Methane production from Jack fruit, Muntingia, Leucaena, Gliricidia (Gliricidia sepium), Mimosa (Mimosa pigra) and Acacia auriculoformis foliages in an in vitro incubation with potassium nitrate as source of NPN. Livestock Research for Rural Development. 25(1). ISSN: 0121-3784.

http://www.lrrd.org/lrrd25/1/phon25015.htm

SOSA-RUBIO EE, Pérez-Rodríguez D, Ortega-Reyes L, Zapata-Buenfil G. 2004. Evaluación del potencial forrajero de árboles y arbustos tropicales para la alimentación de ovinos. Técnica Pecuaria México. 42(2):129-144. ISSN: 0040-1889.

https://www.redalyc.org/pdf/613/61342201.pdf

THEODOROU MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. 48(3-4):185-197. ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(94)90171-6

UGBOGU EA, Elghandour MMMY, Ikpeazu VO, Buendía GR, Molina OM, Arunsi UO, Emmanuel O, Salem AZM. 2019. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. Journal of Cleaner Production. 213, 915–925. ISSN: 0959-6526.

https://doi.org/10.1016/j.jclepro.2018.12.233

VALENCIA-DEL TORO G, Garín-Aguilar ME. 2010. Manual de Prácticas de Productos Naturales. Instituto Politécnico Nacional. DF, México.

VAN SOEST PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583-3597. ISSN: 0022-0302. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

VARGAS J, Cárdenas E, Pabón M, Carulla J. 2012. Emisión de metano entérico en rumiantes en pastoreo. Archivos de Zootecnia. 61. ISSN: 1885-4494.

https://doi.org/10.21071/az.v61i237.2958

VELEZ-TERRANOVA M, Campos-Gaona R, Sánchez-Guerrero H. 2014. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Tropical and Subtropical Agroecosystems. 17(3):489-499. ISSN: 1870-0462.

https://www.redalyc.org/pdf/939/93935728004.pdf

ZHANG X, Zhang H, Wang Z, Zhang X, Zou H, Tan C, Peng Q. 2017. Effects of dietary carbohydrate composition on rumen fermentation characteristics and microbial population in vitro. Italian Journal of Animal Science. 14(3):489-499. ISSN: 1870-0462.

https://doi.org/10.4081/ijas.2015.3366

Publicado

2022-08-19

Número

Sección

Artículos Originales