Identification and antimicrobial resistance of isolated bacteria from trachea of laying hens
Keywords:
resistance, susceptibility, antibiotic, bacteria, laying hensAbstract
In poultry production, bacterial respiratory problems are the cause of economic losses due to production decrease, increasing cost of antibiotic treatment and the leading cause of death in laying hens. The presence of pathogens implies a distribution in the production units and their identification by biochemical tests allows the characterization at the species level, and its adequate treatment. The aim of the present study was identify the bacteria isolated from the trachea of laying hens and determine their antibiotic resistance profile. In an intensive production farm, trachea samples were taken from hens; the bacterial detection was carry out with isolation, colonial and microscopic identification and biochemical tests, in addition, the antimicrobial susceptibility test was determined. Thirty-two isolates corresponding to five types of bacterial colonies with morphology of cocci and Gram-positive bacilli (Staphylococcus aureus, Staphylococcus epidermidis and Corynebacterium spp) and Gram-negative coccobacilli (Pasteurella multocida and Gallibacterium anatis) were obtained. S. aureus, S. epidermidis and Corynebacterium spp showed resistance to glycopeptides (100%), in addition to P. multocida and G. anatis, to ampicillin (beta-lactams) and quinolones (100%). The isolated bacteria showed resistance and multi-resistance to antibiotics, with implications for poultry farming and public health.
http://dx.doi.org/10.21929/abavet2022.26
e2021-3
https://www.youtube.com/watch?v=M6C5VaxAtDY
References
AMMAR AM, El-Aziz NKA, El Wanis SA, Bakry NR. 2016. Molecular versus conventional culture for detection of respiratory bacterial pathogens in poultry. Cellular and Molecular Biology. 62(2): 52-56. ISSN: 1165-158X.
http://www.cellmolbiol.org/index.php/CMB/article/view/799/409
ARCE MA, Miranda DD, Mora A, Camacho MC, Artiles E, Tandrón E. 2011. Pasteurelosis aviar. Comportamiento clínico, anatomopatológico y microbiológico. Revista Electrónica de Veterinaria. 12(8). ISSN 1695-7504.
http://www.redalyc.org/articulo.oa?id=63621920004
ATAEI S, Bojesen AM, Amininajafi F, Ranjbar MM, Banani M, Afkhamnia M, Abtin A, Goodarzi H. 2017. First report of Gallibacterium isolation from layer chickens in Iran. Archives of Razi Institute. 72(2):123-128. https://doi.org/10.22092/ari.2017.109842
ATERE AV, Bamikole AM, Oluyege AO, Ajurojo OA, Alo OS. 2016. Prevalence and antibiotic resistance of Pasteurella multocida isolated from chicken in Ado-Ekiti metrópolis. Scientific World. 4(2):40-42. https://doi.org/10.14419/ijsw.v4i2.6273
BAGUST TJ. 2013. Salud de las aves de corral y control de enfermedades en los países en desarrollo. En: Revisión del desarrollo avícola. Editorial Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Pp. 102. ISBN: 978-92-5-308067-0 (PDF). http://www.fao.org/3/a-i3531s.pdf
BENRABIA I, Hamdi TM, Shehata AA, Neubauer H, Wareth G. 2020. Methicillin-Resistant Staphylococcus aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Veterinary Science. 7(2):1-11.
https://doi.org/10.3390/vetsci7020054
BRAYKOV NP, Eisenberg JNS, Grossman M, Zhang L, Vasco K, Cevallos W, Muñoz D, Acevedo A, Moser KA, Marrs CF, Foxman B, Trostle J, Trueba G, Levy K. 2016. Antibiotic resistance in animal and environmental samples associated with small-scale poultry farming in northwestern Ecuador. mSphere 1(1):e00021-15.
https://doi.org/10.1128/mSphere.00021-15
BOU G, Fernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Infecciosas y Microbiología Clínica. 29(8):601–608. https://doi.org/10.1016/j.eimc.2011.03.012
BROCHU NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. 2019. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. Veterinary Diagnostic Investigation. 31(3):327–335.
https://doi.org/10.1177/1040638719843577
CASTILLO G, Koga Y, Alvarado A, Tinoco R, Fernández D. 2014. Aislamiento e Identificación Bioquímica de Cepas de Pasteurella multocida y Gallibacterium anatis en Aves de Producción con Signos Respiratorios. Investigaciones Veterinarias del Perú. 25(4): 516-522. http://dx.doi.org/10.15381/rivep.v25i4.10812
CLSI (Clinical and Laboratory Standards Institute). 2015. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. Pp. 120. (ISBN 1-56238-917-3 [Print]; ISBN 1-56238-918-1 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.
https://goums.ac.ir/files/deputy_treat/md_labs_ef39a/files/CLSI-M45ed3e-2018(1).pdf
CLSI (Clinical and Laboratory Standards Institute). 2017. Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals, 1st ed. CLSI supplement VET06. Pp. 114. (ISBN 1-56238-810-X [Print]; ISBN 1-56238-811-8 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.
https://clsi.org/media/1524/vet06ed1_sample.pdf
CLSI (Clinical and Laboratory Standards Institute). 2018. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. 11th Edition. CLSI standard M07. Pp. 91. (ISBN 1-56238-836-3 [Print]; ISBN 1-56238-837-1 [Electronic]). https://community.clsi.org/media/1928/m07ed11_sample.pdf
CLSI (Clinical and Laboratory Standards Institute). 2021. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Pp. 352. ISBN 978-1-68440-104-8 [Print]; ISBN 978-1-68440-105-5 [Electronic]). Clinical and Laboratory Standards Institute, USA. https://clsi.org/media/3481/m100ed30_sample.pdf
COLAS M, Merino M, Santana Y, Miranda Y, Bacallao N, Lobo E, Vega A. 2010. Serological study of agents associated to chronic respiratory syndrome in laying hens. Biotecnología Aplicada. 27(3):232-236. ISSN 1027-2852.
http://scielo.sld.cu/scielo.php?pid=S1027-28522010000300006&script=sci_abstract&tlng=pt
COLAS CMC, Lamazares MC, Pérez GL, Sosa TIM, Abeledo MA, Merino LA, Fuente D, Gómez ÁE. 2011a. Evaluación epidemiológica de procesos respiratorios bacterianos en reemplazos de ponedoras. Salud Animal. 33(3):178-183. ISSN: 0253-570X.
http://revistas.censa.edu.cu/index.php/RSA/article/view/266
COLÁS CMC, Lamazares MC, Pérez GL, Sosa TIM, Abeledo MA, Merino LA, Fuente D, Gómez ÁE. 2011b. Evaluación epidemiológica de procesos respiratorios bacterianos en gallinas ponedoras. Salud Animal. 33(2):69-75. ISSN: 0253-570X.
http://revistas.censa.edu.cu/index.php/RSA/article/view/247
DAVIES J, Davies D. 2010. Origins and Evolution of Antibiotic Resistance. Microbiology and molecular biology reviews. 74(3):417-433.
https://journals.asm.org/doi/10.1128/MMBR.00016-10
DE LA CRUZ LM. 2016. Aislamiento y caracterización de Mycoplasma synoviae y otras bacterias asociadas al complejo respiratorio aviar en pollos de engorde de la provincia Manabí, Ecuador. Salud Animal. 38(3):199-199. ISSN: 2224-4700.
http://revistas.censa.edu.cu/index.php/RSA/article/view/861
EL-ADAWY H, Bocklisch H, Neubauer H, Hafez HM, Hotzel H. 2018. Identification, differentiation and antibiotic susceptibility of Gallibacterium isolates from diseased poultry. Irish Veterinary. 71(1):5. http://dx.doi.org/10.1186/s13620-018-0116-2
ELBESTAWY AR, Ellakany HF, El-Hamid HSA, Bekheet AA, Mataried NE, Nasr SM, Amarin NM. 2018. Isolation, characterization, and antibiotic sensitivity assessment of Gallibacterium anatis biovar haemolytica, from diseased Egyptian chicken flocks during the years 2013 and 2015. Poultry Science. 97(5):1519–1525.
http://dx.doi.org/10.3382/ps/pey007
ESPINOSA I, Colas M, Vichi J, Báez M, Martínez S. 2011. Isolation and identification of Ornithobacterium rhinotracheale from laying hens in farms of la Habana province. Salud Animal. 33(1):38-43. ISSN: 2224-4700.
https://www.researchgate.net/publication/228483199
EUCAST. 2022. Clinical Breakpoints Table v. 12.0.
http://www.eucast.org/clinical_breakpoints/
FLORES-HERNÁNDEZ W, Luna-Castro A, Peña-Avelino L, Barrios-García H, Alva-Pérez J. 2020. Microbiota vaginal y susceptibilidad quimioterapéutica en cabras criollas. Abanico Veterinario. 10:1-14. ISSN 2448-6132. http://dx.doi.org/10.21929/abavet2020.37
FUNKE G, Von Graevenitz A, Clarridge JE, Bernard KA. 1997. Clinical Microbiology of Coryneform Bacteria. Clinical Microbiology Reviews. 10(1):125-159.
https://doi.org/10.1128/CMR.10.1.125
GLENDINNING L, McLachlan G, Vervelde L. 2017. Age-related differences in the respiratory microbiota of chickens. PLoS one. 12(11):e0188455.
https://doi.org/10.1371/journal.pone.0188455
GLISSON JR. 1998. Bacterial Respiratory Diseases of Poultry. Poultry Science 77(8):1139–1142. https://doi.org/10.1093/ps/77.8.1139
HOOVER DG, Tatini SR, Maltais JB. 1983. Characterization of Staphylococci. Applied and Environmental Microbiology. 46(3):649-660.
https://journals.asm.org/doi/10.1128/aem.46.3.649-660.1983
ID (Investigación Diagnóstica). 2020. Laboratorio de reactivos para diagnóstico. Abel Gutiérrez. http://quimex.com.mx/wp-content/uploads/2021/01/Multibac-Multidiscos-Antibiogramas.pdf
JORGENSEN JH, Ferraro MJ. 2000. Antimicrobial Susceptibility Testing: Special Needs for Fastidious Organisms and Difficult-to-Detect Resistance Mechanisms. Clinical Infectious Diseases. 30(5):799–808. ISSN 1058-4838. https://doi.org/10.1086/313788
KAISER GE. Microbiology Laboratory Manual. 2017. The Community College of Baltimore County, Catonsville Campus. UK.
https://cwoer.ccbcmd.edu/science/microbiology/Lab%20Manual/lab8/lab8.html
KRISHNEGOWDA DN, Dhama K, Mariappana AK, Munuswamya P, Yatoob MI, Tiwaric R, Karthikd K, Bhatte P, Reddy MR. 2020. Etiology, epidemiology, pathology, and advances in diagnosis, vaccine development, and treatment of Gallibacterium anatis infection in poultry: a review. Veterinary Quarterly. 40(1):16–34.
https://doi.org/10.1080/01652176.2020.1712495
MENDOZA K, Zavaleta A, Koga Y, Rodríguez J, Alvarado A, Tinoco R. 2014. Variabilidad genética de cepas de Gallibacterium anatis aisladas de aves comerciales del Perú con infecciones respiratorias. Investigación Veterinaria Perú. 25(2):233-244.
https://doi.org/10.15381/rivep.v25i2.8496
SANZ-RODRÍGUEZ N, Almagro-Moltó M, Vozmediano-Serrano MT, Gómez-Garcés JL. 2014. Primer aislamiento de Corynebacterium mucifaciens en una úlcera corneal. Cartas científicas / Enfermedades Infecciosas y Microbiología Clínica. 32(8):542–547.
https://doi.org/10.1016/j.eimc.2013.11.012
NASSIK S, Tallouzt S, Karbach N, Touzani C, Bidoudan Y, Aamarine N, Hess C. 2019. First Report of Isolation of Gallibacterium anatis from Layer Chickens in Morocco with Decrease in Laying Performance. Avian diseases. 63(4):727–730.
https://doi.org/10.1637/aviandiseases-D-19-00119
NHUNG NT, Chansiripornchai N, Carrique-Mas JJ. 2017. Antimicrobial Resistance in Bacterial Poultry Pathogens: A review. Frontiers in Veterinary Science. 4:126.
https://doi.org/10.3389/fvets.2017.00126
NWORIE A, Elom MO, Gideon IA, Azi SO, Okekpa SI, Ukwah BN, Usanga VU, Okon UN, Chinwe E, Olayinka BO, Onaolapo JA, Ehinmidu JO. 2016. Multi-drug resistant Staphylococcus aureus from poultry farms in Ebonyi State, Nigeria. Micro Biology, Genetics and Monocular Biology. 2(3):1-11.
https://www.researchgate.net/publication/329589615
ONU (Organización de las Naciones Unidas). 2019. Se avecina una crisis “desastrosa” de enfermedades resistentes a los medicamentos. España. 7 p.
https://news.un.org/es/story/2019/04/1455011
OSMAN KM, Amer AM, Badr JM, Saad ASA. 2015. Prevalence and Antimicrobial Resistance Profile of Staphylococcus Species in Chicken and Beef Raw Meat in Egypt. Foodborne pathogens and disease. 12(5):406-413.
http://dx.doi.org/10.1089/fpd.2014.1882
OSUNA CRF, Molina BRM, Munguía XJA, Hernández CJF, López LJB, Acuña YM, Fernández MVA, Robles MJ, Icedo EJGA. 2017. Resistencia antimicrobiana de Gallibacterium anatis aisladas de gallinas de postura comercial en Sonora, México. Revista Mexicana de Ciencias Pecuarias. 8(3):305-312.
http://dx.doi.org/10.22319/rmcp.v8i3.4506
SINGH SV, Singh BR, Sinha DK, Kumar ORV, Vadhana AP, Bhardwaj M, Dubey S. 2016. Gallibacterium anatis: An Emerging Pathogen of Poultry Birds and Domiciled Birds. Veterinary Science and Technology. 7(3):324. ISSN: 2157-7579.
http://dx.doi.org/10.4172/2157-7579.1000324
VANEGAS-MÚNERA JM, Jiménez-Quinceno JN. 2020. Resistencia antimicrobiana en el siglo XXI: ¿hacia una era postantibiótica? Facultad Nacional de Salud Pública. 38(1):e337759. https://revistas.udea.edu.co/index.php/fnsp/article/view/337759
VARGAS J, Máttar S, Monsalve S. 2010. Bacterias patógenas con alta resistencia a antibióticos: estudio sobre reservorios bacterianos en animales cautivos en el zoológico de Barranquilla. Infectio. 14(1): 6-19. https://doi.org/10.1016/S0123-9392(10)70088-6
WEINSTEIN MP, Towns ML, Quartey SM, Mirret S, Reimer LG, Parmigiani G, Reller LB. 1997. The clinical significance of positive blood cultures in the 1990s: A prospective comprehensive evaluation of microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clinical Infectious Diseases. 24:584-602.
https://academic.oup.com/cid/article/24/4/584/439162
YANG K, Kruse RL, Lin WV, Musher DM. 2018. Corynebacteria as a cause of pulmonary infection: a case series and literature review. Pneumonia. 10(1):1-8.
https://doi.org/10.1186/s41479-018-0054-5
ZAHOOR MA, Siddique M. 2006. Characteristics of Pasteurella multocida recovered from avian sources. Pakistan Veterinary. 26(1):41-43.
https://www.researchgate.net/publication/242775243
ZENDEJAS-MANZO GS, Avalos-Flores H, Soto-Padilla MY. 2014. Microbiología general de Staphylococcus aureus: Generalidades, patogenicidad y métodos de identificación. Biomédica. 25(3):129-143.
https://www.revistabiomedica.mx/index.php/revbiomed/article/view/42