Recent advances in the study of thermoregulation in homeothermic animals: thermogenesis, thermolysis, and thermal homeostasis

Authors

Keywords:

cutaneous vasoconstriction, brown adipose tissue, non-shivering thermogenesis

Abstract

Thermoregulation in homeothermic animals is an active and continuous physiological process that balances heat generation (thermogenesis) and heat loss (thermolysis) to maintain thermal homeostasis, which is crucial in the face of climate change. Homeothermic animals regulate their body temperature (37–42°C) through neural and peripheral mechanisms, with the preoptic area of the hypothalamus acting as a key integrating nucleus, although evidence suggests the existence of decentralized hypothalamic-associated networks that play complementary roles. Strategies to maintain homeostasis in cold conditions include cutaneous vasoconstriction, non-shivering thermogenesis (brown adipose tissue activity), and skeletal muscle contraction to conserve body heat. In contrast, heat induces capillary vasodilation, sweating, and panting to facilitate thermolysis or heat loss. Transient receptor potential (TRP) channels and GABAergic/glutamatergic neurons modulate these responses, with direct implications for hyperthermia/hypothermia processes. The physiological asymmetry between the upper and lower limits of thermal homeostasis highlights the vulnerability of organisms to extreme temperatures outside their comfort zone.

http://dx.doi.org/10.21929/abavet2025.13        

e2025-34

https://www.youtube.com/watch?v=Hvh8qP8FHJc

References

ANDRADE DV, Gavira RSB, Tattersall GJ. 2015. Thermogenesis in ectothermic vertebrates. Temperature. 2:454-454. ISSN 2332-8940.

https://doi.org/10.1080/23328940.2015.1115570

BASTOS B, Pradhan N, Tarroso P, Brito JC, Boratyński Z. 2021. Environmental determinants of minimum body temperature in mammals. Journal of Vertebrate Biology. 70:1-12. ISSN 2694-7684. https://doi.org/10.25225/jvb.21004

BEALE PK, Marsh KJ, Foley WJ, Moore BD. 2017. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biological Reviews. 93:674-692. ISSN 1469-185X. http://dx.doi.org/10.1111/brv.12364

BIENBOIRE-FROSINI C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. 2023. The role of brown adipose tissue and energy metabolism in mammalian thermoregulation during the perinatal period. Animals. 13:2173. ISSN 2076-2615. https://doi.org/10.3390/ani13132173

BLATTEIS CM. 2016. A personal recollection: 60 years in thermoregulation. Temperature. 3:1-7. ISSN 2332-8940. https://doi.org/10.1080/23328940.2016.1148524

BLOMQVIST A. 2024. Prostaglandin E2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature. 11:309-317. ISSN 2332-8940. https://doi.org/10.1080/23328940.2024.2401674

CHARKOUDIAN N. 2016. Human thermoregulation from the autonomic perspective. Autonomic Neuroscience. 196:1-2. ISSN 1566-0702.

https://doi.org/10.1016/j.autneu.2016.02.007

CHEN Z, Zhang P, Liu T, Qiu X, Li S, Lin JD. 2024. Neuregulin 4 mediates the metabolic benefits of mild cold exposure by promoting beige fat thermogenesis. Journal of Clinical Investigation Insight. 9. ISSN 2379-3708. https://doi.org/10.1172/jci.insight.172957

CHENG C-W, Zheng J. 2021. Distribution and assembly of TRP ion channels. In Zhou L (Ed.), Ion Channels in Biophysics and Physiology. Springer Nature.

https://doi.org/10.1007/978-981-16-4254-8

CHONDRONIKOLA M, Porter C, Malagaris I, Nella AA, Sidossis LS. 2017. Brown adipose tissue is associated with systemic concentrations of peptides secreted from the gastrointestinal system and involved in appetite regulation. European Journal of Endocrinology. 177:33-40. https://doi.org/10.1530/EJE-16-0958

CHU DT, Gawronska KB. 2017. Brown and brite adipocytes: same function, but different origin and response. Biochimie. 138:102-105. ISSN 0300-9084.

https://doi.org/10.1016/j.biochi.2017.04.017

CRAMER MN, Jay O. 2016. Biophysical aspects of human thermoregulation during heat stress. Autonomic Neuroscience. 196:3-13. ISSN 1566-0702.

https://doi.org/10.1016/j.autneu.2016.03.001

CUNNINGHAM JG, Bradley GK. 2014. Cunninhham - Fisiologia Veterinaria. (5ta ed.). Elsevier. ISBN 9788490223178.

FLOURIS AD. 2015. Shaping our understanding of endothermic thermoregulation. Temperature. 2:328-329. ISSN 2332-8940.

https://doi.org/10.1080/23328940.2015.1058321

HANKIR MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther‐Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, Hesse S, Seibyl JP, Sabri O, Heiker JT, Blüher M, Pfeifer A, Brust P, Fenske WK. 2016. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Molecular Medicine. 8:796-812. ISSN 1757-4676. https://doi.org/10.15252/emmm.201506085

HU Y, Converse C, Lyons MC, Hsu WH. 2017. Neural control of sweat secretion: a review. British Journal of Dermatology. ISSN 1365-2133.

http://dx.doi.org/10.1111/bjd.15808

IMERI L. 2017. Thermoregulation as a non-unified system: a difficult to teach concept. Temperature. 4:1-8. ISSN 2332-8940. https://doi.org/10.1080/23328940.2017.1281872

KAMM GB, Siemens J. 2017. The TRPM2 channel in temperature detection and thermoregulation. Temperature. 4:21-23. ISSN 2332-8940.

https://doi.org/10.1080/23328940.2016.1258445

KINGMA BRM. 2016. The link between autonomic and behavioral thermoregulation. Temperature. 3:195-196. ISSN 2332-8940.

https://doi.org/10.1080/23328940.2016.1168535

KRUSE V, Neess D, Færgeman NJ. 2017. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends in Endocrinology and Metabolism. 28:669-683. ISSN 1043-2760. https://doi.org/10.1016/j.tem.2017.06.001

KUHT J, Farmery AD. 2021. Body temperature and its regulation. Anaesthesia & Intensive Care Medicine. 22:657-662. ISSN 1472-0299.

https://doi.org/10.1016/j.mpaic.2021.07.004

LIEDTKE WB. 2017. Deconstructing mammalian thermoregulation. Proceedings of the National Academy of Sciences of the United States of America. 114:1765-1767. ISSN 0027-8424. https://doi.org/10.1073/pnas.1620579114

MASUDA Y, Sakai R, Kato I, Nagashima K. 2022. Thermoregulatory heat-escape/cold-seeking behavior in mice and the influence of TRPV1 channels. PLoS One. 17:e0276748. ISSN 1932-6203. https://doi.org/10.1371/journal.pone.0276748

MORRISON SF. 2016a. Central control of body temperature. F1000Research. 5:F1000 Faculty Rev-1880. ISSN 2046-1402. https://doi.org/10.12688/f1000research.7958.1

MORRISON SF. 2016b. Central neural control of thermoregulation and brown adipose tissue. Autonomic Neuroscience. 196:14-24. ISSN 1566-0702

https://doi.org/10.1016/j.autneu.2016.02.010

MORRISON SF, Nakamura K. 2011. Central neural pathways for thermoregulation. Frontiers in Bioscience. 16:74-104. ISSN 1093-9946.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051412/

MOTA-ROJAS D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. 2024. Hypothalamic neuromodulation of hypothermia in domestic animals. Animals. 14:513. ISSN 2076-2615.

https://doi.org/10.3390/ani14030513

NILSSON JÅ, Molokwu MN, Olsson O. 2016. Body temperature regulation in hot environments. PLoS One. 11:e0161481. ISSN 1932-6203.

https://doi.org/10.1371/journal.pone.0161481

RICQUIER D. 2024. The brown adipocyte: What a story! Annales d'Endocrinologie. 85:252. ISSN 0003-4266. https://doi.org/10.1016/j.ando.2024.05.018

ROMANOVSKY AA. 2007. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 292:R37-R46. ISSN 0363-6119. https://doi.org/10.1152/ajpregu.00668.2006

SARUBBI J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. 2024. Hypothalamic neuromodulation and control of the dermal surface temperature of livestock during hyperthermia. Animals. 14:1745. ISSN 2076-2615. https://doi.org/10.3390/ani14121745

SCRIVEN JJ, Whitehorn PR, Goulson D, Tinsley MC. 2016. Bergmann's Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species. PLoS One. 11:e0163307. ISSN 1932-6203.

https://doi.org/10.1371/journal.pone.0163307

SHI LL, Fan WJ, Zhang JY, Zhao XY, Tan S, Wen J, Cao J, Zhang XY, Chi QS, Wang DH, Zhao ZJ. 2017. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 212:35-44. ISSN 1095-6433. https://doi.org/10.1016/j.cbpa.2017.07.002

SONG K, Wang H, Kamm GB, Pohle J, Reis FdC, Heppenstall P, Wende H, Siemens J. 2016. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science. 353:1393-1398. https://doi.org/10.1126/science.aaf7537

SUITO T, Tominaga M. 2024. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits. 18:1435757. ISSN 1662-5110. https://doi.org/10.3389/fncir.2024.1435757

TAN CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. 2016. Warm-sensitive neurons that control body temperature. Cell. 167:47-59.e15. ISSN 0092-8674. https://doi.org/10.1016/j.cell.2016.08.028

WANG S, Yang X. 2017. Inter-organ regulation of adipose tissue browning. Cellular and Molecular Life Sciences. 74:1765-1776. ISSN 1420-9071.

https://doi.org/10.1007/s00018-016-2420-x

YAHIRO T, Kataoka N, Nakamura K. 2023a. Exploration of thermosensory central neural pathways that drive thermoregulatory behavior. Physiology. 38:5730524. https://doi.org/10.1152/physiol.2023.38.s1.5730524

YAHIRO T, Kataoka N, Nakamura K. 2023b. Two ascending thermosensory pathways from the lateral parabrachial nucleus that mediate behavioral and autonomous thermoregulation. Journal of Neuroscience. 43:5221-5240.

https://doi.org/10.1523/JNEUROSCI.0643-23.2023

YAHIRO T, Kataoka N, Nakamura Y, Nakamura K. 2017. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Scientific Reports. 7:5031. ISSN 2045-2322.

https://doi.org/10.1038/s41598-017-05327-8

YONESHIRO T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K, Katsuragi Y, Kameya T, Sugie H, Saito M. 2017. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. The American Journal of Clinical Nutrition. 105:873-881. ISSN https://doi.org/10.3945/ajcn.116.144972

ZHAO Z-D, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, Chen W, Ni X, Lin J-K, Yang J, Xu X-H, Shen WL. 2017. A hypothalamic circuit that controls body temperature. Proceedings of the National Academy of Sciences. 114:2042-2047.

https://doi.org/10.1073/pnas.1616255114

Published

2025-12-28

Issue

Section

Literature reviews