Ruminal bacteria and protozoa present in sheep supplemented with probiotics identified by counting and PCR end point

Authors

Keywords:

sheep, ruminal fermentation, bacteria, protozoan, PCR

Abstract

Some microbial cultures, mainly the use of probiotics, have been used in ruminant nutrition, generating a positive effect by solving imbalances due to dietary changes in the rumen. The objective was to identify and evaluate bacteria and ruminal protozoa present in sheep supplemented with biopreparation of microorganisms (PNC) vs commercial probiotic REVET® (PCRE) at different concentrations by Neubauer chamber count and PCR endpoint. Twenty-one Katahdin and Dorper cross sheep of 3 months of 18-25 kg were used, they were supplemented with PNC and PCRE, at different concentrations: PNC 100%, 66%, 33%, control, PCRE 100%, 66%, 33%. The ruminal liquid was obtained through a probe, the ruminal microorganisms were counted in a Neubauer chamber every six hours. Genomic DNA extraction using the Ultra Clean Microbial DNA kit, DNA quantification was performed in a spectrophotometer, and PCR reactions were performed with oligonucleotides synthesized by Invitrogen®. Statistical analysis was through the GENMODE procedure for counting bacteria and protozoa. The highest amount of protozoa was at 24 hours in PNC at 100%, followed by PNC 33% at 18 hours, for commercial probiotic PCRE at 66% at 12 hours. Regarding bacteria, they showed statistically equal values. Genomic DNA quantification was greater than 25 ng/µL. The inhibitory effect of the probiotic on Fibrobacter succinogenes at a concentration of 100% was demonstrated. Total bacteria were not affected by probiotic supplementation. Therefore, it is concluded that the non-commercial probiotic can be an alternative to supplement the diet of growing sheep, observing an increase in bacteria and protozoa. Likewise, probiotics are an additive that can be used successfully since they did not modify the population of total bacteria in the rumen.

e2021-75

http://dx.doi.org/10.21929/abavet2022.6               

https://www.youtube.com/watch?v=q1xX0Qi025E

References

ARCOS-GARCÍA JL, López-Pozos R, Bernabé-Hernández A, Hoffman JA. 2007. La actividad microbiana en la fermentación ruminal y el efecto de la adición de Saccharomyces cerevisiae. Ciencia y Tecnología. 11(32):51:62.

https://www.utm.mx/edi_anteriores/pdf/nota3t32.pdf

BACH A, Calsamiglia S, Stern MD. 2005. Nitrogen metabolism in the rumen. Journal of dairy science. 88(1):e9-21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7

BODAS R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology. 176(1-4):78-93.

https://doi.org/10.1016/j.anifeedsci.2012.07.010

CARDONA-IGLESIAS JL, Mahecha-Ledesma L, Angulo-Arizala J. 2017. Arbustivas forrajeras y ácidos grasos: estrategias para disminuir la producción de metano entérico en bovinos. Agronomía Mesoamericana, 28 (1), 273-288.

https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212017000100022

CASTAÑEDA ARO, Álvarez MJA, Rojas MC, Lira AJJ, Ríos UÁ, Martínez IF. 2021. Nivel de infestación de Rhipicephalus microplus y su asociación con factores climatológicos y la ganancia de peso en bovinos Bos taurus x Bos indicus. Revista mexicana de ciencias pecuarias, 12(1), 273-285. https://doi.org/10.22319/rmcp.v12i1.5392

CASTILLO-LOPEZ E, Wiese BI, Hendrick S, McKinnon JJ, McAllister TA, Beauchemin KA, Penner GB. 2014. Incidence, prevalence, severity, and risk factors for ruminal acidosis in feedlot steers during backgrounding, diet transition, and finishing. Journal of animal science. 92(7):3053-3063. https://doi.org/10.1111/j.1365-2672.2012.05295.x

CASTILLO-LOPEZ E, Domínguez-Ordóñez MG. 2019. Factores que afectan la composición microbiana ruminal y métodos para determinar el rendimiento de la proteína microbiana. Revisión. Revista mexicana de ciencias pecuarias. 10(1):120-148.

http://dx.doi.org/10.22319/rmcp.v10i1.4547

CASTILLO-LOPEZ E, Klopfenstein TJ, Fernando SC, Kononoff PJ. 2013. In vivo determination of rumen undegradable protein of dried distillers grains with solubles and evaluation of duodenal microbial crude protein flow. Journal of animal science. 91(2):924-934. https://doi.org/10.2527/jas.2012-5323

DANIELSSON R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in microbiology. 8(1):226.

https://doi.org/10.3389/fmicb.2017.00226

DAZA C, Guillen J, Rey J, Ruiz V. 2014. Evaluación de un método de extracción y purificación de DNA a partir de tejido muscular fijado en formaldehido de cadáveres no identificados. Revista Med. 22(1): 42-49.

http://www.scielo.org.co/pdf/med/v22n1/v22n1a06.pdf

DEGIRMENCIOGLU T, Ozcan T, Ozbilgin S, Senturklu S. 2013. Effects of yeast culture addition (Saccharomyces cerevisiae) to Anatolian water buffalo diets on milk composition and somatic cell count. J. Dairy Prod. process. improv. 63:42–48.

https://doi.org/10.15567/mljekarstvo

DENMAN SE, McSweeney CS. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS microbiology ecology. 58(3):572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x

EL-SAYED AA, Mousa SA. 2020. Effects of administration of probiotic on body growth and hematobiochemical profile in growing Barki lambs. Comparative Clinical Pathology. 29(1):297-303. https://doi.org/10.1007/s00580-019-03057-z

FIRKINS JL. 2021. Invited Review: Advances in rumen efficiency. Applied Animal Science, 37(4), 388-403. https://doi.org/10.15232/aas.2021-02163

FRAGA M, Perelmuter K, Valencia MJ, Martínez M, Abin-Carriquiry A, Cajarville C, Zunino P. 2014. Evaluation of native potential probiotic bacteria using in vitro ruminal fermentation system. Annsls microbiology. 64(3):1149-1156.

https://annalsmicrobiology.biomedcentral.com/articles/10.1007/s13213-013-0753-3

GALINDO J, Elías A, Muñoz E, Marrero Y, González N, Sosa A. 2017. Activadores ruminales, aspectos generales y sus ventajas en la alimentación de animales rumiantes. Cuban Journal of Agricultural Science. 51(1):11-23.

http://scielo.sld.cu/pdf/cjas/v51n1/cjas02117.pdf

GHARECHAHI J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. 2021. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. The ISME Journal, 15(4), 1108-1120. https://doi.org/10.1038/s41396-020-00837-2

GREEN MR, Hughes H, Sambrook J, MacCallum P. 2012. Molecular cloning: a laboratory manual. In Molecular cloning: a laboratory manual. Pp. 1890-1890. ISBN 978-1-936113-42-2. https://www.cshlpress.com/pdf/sample/2013/MC4/MC4FM.pdf

HOBSON PN, Stewart CS. 2012. The rumen microbial ecosystem. Springer Science & Business Media. (Eds.).

https://books.google.com.pr/books?id=B8quw8mhYCkC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

IZUDDIN WI, Loh TC, Samsudin AA, Foo HL, Humam AM, Shazali N. 2019. Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs. BMC Vet. Res. 15, 315. https://doi.org/10.1186/s12917-019-2064-9

JOUANY JP. 1994. Methods of manipulating the microbial metabolism in the rumen. In Annales de zootechnie. 43(1):49-62. https://hal.archives-ouvertes.fr/hal-00888958/document

JUN HS, Qi M, Ha JK, Forsberg CW. 2007. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian-Australasian Journal of Animal Sciences. 20(5):802-810. https://doi.org/10.5713/ajas.2007.802

KOBAYASHI Y. 2006. Inclusion of novel bacteria in rumen microbiology: need for basic and applied science. Animal Science Journal. 77(4):375-385.

https://doi.org/10.1111/j.1740-0929.2006.00362.x

KHATTAB IM, Abdel-Wahed AM, Khattab AS, Anele UY, El-Keredy A, Zaher M. 2020. Effect of dietary probiotics supplementation on intake and production performance of ewes fed Atriplex hay-based diet. Livestock Science. 237(April):104065.

https://doi.org/10.1016/j.livsci.2020.104065

KYAN T, Shintani M, Kanda S, Sakurai M, Ohashi H, Fujisawa A, Pongdit S. 1999. Kyusei nature farming and the technology of effective microorganisms. Atami (Japan), Asian Pacific Natural Agricultural Network.

https://www.bokashi.se/dokument/bibliotek/APNAN%2520Manual.pdf

LÓPEZ FR, Álvarez AA, León RDA, Taylor OVM, Guiral GD, Ríos CS, Loranz SE, Katherine PL, Vergara AS. 2020. La investigación con Streptomyces spp. como herramienta para el estudio de los microorganismos del suelo. Centro de investigaciones Facultad de Ciencias de la Salud. Primera edición, Volumen 1. Editorial Zapata–Manizales. ISBN: 978-958-8859-62-0.

https://repository.unilibre.edu.co/handle/10901/18649

MARKOWIAK P, Śliżewska K. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut pathogens. 10(1):1-20. https://doi.org/10.1186/s13099-018-0250-0

MARTIN SA. 1994. Nutrient transport by ruminal bacteria: a review. Journal of animal science. 72(11):3019-3031. https://doi.org/10.2527/1994.72113019x

MATTHEWS C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. 2018. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut microbes, 10(2), 115-132.

https://doi.org/10.1080/19490976.2018.1505176

MELLER RA, Firkins JL, Gehman AM. 2014. Efficacy of live yeast in lactating dairy cattle. Prof. Anim. Sci. 30, 413–417. https://doi.org/10.15232/pas.2014-01308

McALLISTER TA, Bae HD, Jones GA, Cheng KJ. 1994. Microbial attachment and feed digestion in the rumen. Journal of animal science. 72(11):3004-3018.

https://doi.org/10.2527/1994.72113004x

MIRÓN J, 1991. La hidrólisis de los componentes monosacáridos de la pared celular de la alfalfa mediante monocultivos o combinaciones de pares de bacterias ruminales definidas. Revista de bacteriología aplicada. 70(3): 245-252.

https://doi.org/10.1111/j.1365-2672.1991.tb02932.x

MOALLEM U, Lehrer H, Livshitz L, Zachut M, Yakoby S, 2009. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 92:343–351. https://doi.org/10.3168/jds.2007-0839

MORRISON M, Neslon KE, Cann I, Forsberg CW, Mackie RI, Russell JB, White BA, Wilson DB, Amaya K, Cheng B, Qi S, Jun HS, Mulligan S, Tran K, Carty H, Khouri H, Nelson W, Daugherty S, Tran K. 2003. The Fibrobacter succinogenes strain S85 sequencing project. 3rd ASM-TIGR, Microbial Genome Meeting. New Orleans. https://www.koreascience.or.kr/article/JAKO200710103409172.j

MOULD DL, Thomas GJ. 1958. The enzymic degradation of starch by Holotrich protozoa from sheep rumen. Biochem. J. 69:327.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196559/pdf/biochemj00831-0014.pdf

PETRI RM, Forster RJ, Yang W, McKinnon JJ, McAllister TA. 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology. 112(6):1152-1162.

https://doi.org/10.1111/j.1365-2672.2012.05295.x

QIAO GH, Shan AS, Ma N, Ma QQ, Sun ZW. 2010. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 94:429–436. https://doi.org/10.1111/j.1439-0396.2009.00926.x

RODRÍGUEZ I, Salazar M, Villalobos E. 2012. Lactobacillus spp. Del tracto intestinal de Gallus gallus con potencial probiótico. Revista Científica de la Facultad de Ciencias Biológicas. 32(2):62-72. https://xdoc.mx/documents/lactobacillus-spp-del-tracto-intestinal-de-gallus-gallus-con-potencial-5ebc63e4de0c8

RODRÍGUEZ R, Sosa A, Rodríguez Y. 2007. La síntesis de proteína microbiana en el rumen y su importancia para los rumiantes. Revista Cubana de Ciencia Agrícola. 41(4):303-311. https://www.redalyc.org/pdf/1930/193017712001.pdf

RODRÍGUEZ R, Lores J, Gutiérrez D, Ramírez A, Gómez S, Elías A, Jay O. 2013. Inclusión del aditivo microbiano Vitafert en la fermentación ruminal in vitro de una dieta para cabras. Revista Cubana de Ciencia Agrícola. 47(2):171-178.

https://www.redalyc.org/pdf/1930/193028751011.pdf

SAS Institute Inc. 2011. SAS 9.3. Cary, NC: SAS Institute Inc.

https://support.sas.com/documentation/onlinedoc/base/procstat93m1.pdf

SHRIVER-MUNSCH CM, Ramsing EM, Males JR, Sanchez WK, Yoon I, Bobe G. 2011. Effect of various dosages of Saccharomyces cerevisiae fermentation product on reproductive function in multiparous dairy cows. In: Page 38 in Proc. 13th Annual Northwest Reproductive Sciences Symposium. Corvallis, OR.

https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/xg94hs88v

SUEN G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ. 2011. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. Plos One. 6:e18814.

https://doi.org/10.1371/journal.pone.0018814

UCHIDA I, Takase S, Kayakiri H, Kiyoto S, Hashimoto M, Tada T, Koda S, Morimoto Y. 1987. Structure of FR 900482, a novel antitumor antibiotic from a Streptomyces. Journal of the American Chemical Society. 109(13):4108-4109.

https://doi.org/10.1021/ja00247a043

WILLIAMS AG, Coleman GS. 2012. The rumen protozoa. Springer Science & Business Media. Nueva York. https://link.springer.com/chapter/10.1007/978-94-009-1453-73

Published

2022-04-24

Issue

Section

Original Articles

Most read articles by the same author(s)