Effect of turmeric and sulfated marine polysaccharides on productive variables and intestinal villi in laying japanese quail
Keywords:
algae, duodenum, jejunum, egg, additivesAbstract
Antibiotics reduce the microbial load in the host and for decades were used as growth promoters, but this resulted in bacterial resistance. The objective was to evaluate plants containing natural bioactive compounds (turmeric) and sulfated marine polysaccharides (SMP) on productive behavior, organ weight and abdominal fat, egg quality, egg weight loss and intestinal villi height in quail. A total of 250 quail were used, where T1= control, T2 and T3= 0.02 % and 0.03 % of turmeric and T4 and T5= 0.02 % and 0.03 % of PMS respectively. With respect to the control, the addition of turmeric and SMP decreased the percentage of egg mass and laying, but improved the weight of the birds, although not the weight of the gizzard, proventriculus and abdominal fat (P>0.05); with respect to the levels, 0.03% of turmeric favored the loss of egg weight (P<0.0002); increasing the levels of turmeric decreased the height of the intestinal villi in the duodenum and jejunum (P<0.001). The level of 0.03 % SMP in laying quails increased egg weight and feed intake (P<0.05) which affected feed conversion (P<0.05). SMP decreased eggshell thickness (P<0.001), which caused egg weight loss, and also reduced the size of intestinal villi in the duodenum (P<0.01).
http://dx.doi.org/10.21929/abavet2025.6
e2024-A3
https://www.youtube.com/watch?v=1YjH0wIcT7w
References
ABUDABOS A, Okab AB, Aljumaah RS, Samara EM, Abdoun KA, Al-Haidary AA. 2013. Valor nutricional de las algas verdes (Ulva lactuca) para pollos de engorde. Italian Journal Animal Science. 12(2). ISSN: 1828-051. https://doi.org/10.4081/ijas.2013.e28
AHMED I, El-Rayes T, Ahmed AI. 2018. Assessment of dietary supplementation of turmeric (curcuma longa) as a phytobiotic on broiler performance and bacterial count. Egyptian Journal of Nutrition and Feeds. 21(2):519-528. ISSN: 1110-6360. https://doi.org/10.21608/EJNF.2018.75612
ANITHA A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. 2011. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydrate Polymers. 83(2):452-461. ISSN: 0144-8617. https://doi.org/10.1016/j.carbpol.2010.08.008
ANWAR H, Rahman ZU, Javed I, Muhammad F. 2013. Efficacy of protein, symbiotic and probiotic supplementation on body performance and organs weight in molted layers. Pakistan Veterinary Journal. 33(11):117-119. ISSN: 0253-8318.
BURLEY RW, Evans AJ, Pearson JA. 1993. Molecular aspects of the synthesis and deposition of hens' egg yolk with special reference to low density lipoprotein. Poultry Science. 72:850-855. ISSN: 2345-6566. https://doi.org/10.3382/ps.0720850
De COS PS, Pérez UE. 2014. Cúrcuma I (Curcuma longa l.). Reduca (Biología). 7(2): 84-99. ISSN: 1989-3620. https://docta.ucm.es/rest/api/core/bitstreams/abdc6b15-a0a0-45f6-b53d-054735502289/content
CAÑEDO CB, Piñón GA, Carrillo S, Ramos D, Casas VM. 2019. Prebiotic effect of Ulva rigida flour on intestinal integrity and serum cholesterol and triglyceride content in broiler chickens. Journal of Applied Phycology. 31:3256-3273. https://doi.org/10.1007/s10811-019-01785-x
COTA RE, Hurtado AL, Pérez ME, Alcántara LJ. 2014. Resistencia a antibióticos de cepas bacterianas aisladas de animales destinados al consumo humano. Revista Iberoamericana de Ciencias. 1(1):74-85. ISSN: 2334-2501.
http://www.reibci.org/publicados/2014/mayo/4569156.pdf
ELNAGGAR AS, Ali RA, El-Said E. 2021. Complementary effect of black pepper and turmeric on productive performance and physiological responses of Japanese quail. Egyptian Poultry Science Journal. 41(1):77-91. ISSN: 1110-5623.
https://doi.org/10.21608/EPSJ.2021.160056
FLORES L, Salazar J, Rodríguez V, Osuna I. 2017. Capacidad antioxidante de polisacáridos sulfatados de seis especies de macroalgas de Sinaloa. Revista de Ciencias Ambientales y Recursos Naturales. 3(7):1-8. ISSN: 2444-4936.
Revista_de_Ciencias_Ambientales_y_Recursos_Naturales_V3_N7_1.pdf
FURDA I. 1990. Interaction of dietary fiber with lipids: mechanistic theories and their limitations. In: Furda I. Brine C. J. (eds.) New developments in dietary fiber. Plenum Press, New York, NY, USA. Pp. 67-82. https://link.springer.com/chapter/10.1007/978-1-4684-5784-1_7
GALLI GM, Silva DAS, Biazus AH, João H, Reis JH, Boiago MM, Topazioa JP, Migliorinib MJ, Guarda NS, Moresco RN, Ourique AF, Santos CG, Lopes LS, Baldissera MD, Stefani LM. 2018. Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. Research in Veterinary Science. 118:101–106. ISSN: 0034-5288. https://doi.org/10.1016/j.rvsc.2018.01.022
GAVA MS, Moraes LB, Carvalho D, Chitolina GZ, Fallavena LCB, Herpich LSM, Salle CTP. 2015. Determining the best sectioning method and intestinal segment for morphometric analysis in broilrs. Brazilian Journal of Poultry Science. 17(2):145-150. ISSN: 1516-635X. https://doi.org/10.1590/1516-635x1702145-150
HASSAN SM. 2016. Effects of adding different dietary levels of turmeric (Curcuma longa Linn) powder on productive performance and egg quality of laying hens. International Journal of Poultry Science. 15(4):156-160. ISSN: 1682-8356.
https://www.cabidigitallibrary.org/doi/full/10.5555/20163155765
KASIYATI, S, Ekastuti DR, Manalu W. 2016. Roles of curcumin and monochromatic light in optimizing liver function to promote egg yolk biosynthesis in magelang ducks. International Journal Poultry Science. 15(10):414-424. ISSN: 1682-8356.
https://scialert.net/abstract/?doi=ijps.2016.414.424
KERMANSHAHI H, Riasi A. 2006. Effect of turmeric rhizome powder (Curcuma longa) and soluble NSP degrading enzyme on some blood parameters of laying hens. International Journal Poultry Science. 5:494-498. ISSN: 1682-8356.
https://scialert.net/fulltext/fulltextpdf.php?pdf=ansinet/ijps/2006/494-498.pdf
LAHAYE M, Jegou D. 1993. Chemical and physicochemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. Journal Applied Phycol. 5:195-200. https://doi.org/10.1007/BF00004017
LIU Y, Song M, Bai H, Wang C, Wang F, Yuan Q. 2024. Curcumin improves the egg quality, antioxidant activity, and intestinal microbiota of quails during the late laying period. Poultry Science. 103(1): e103233. ISSN: 0032-5791.
https://doi.org/10.1016/j.psj.2023.103233
LONGJAM SD, Goswami R, Kalita G, Samanta AK, Ahmed FA. 2024. Effect of turmeric powder supplementation on egg production, hatchability and Internal egg quality Characteristics of Quail Eggs. Archives of Current Research International. 24(5):769-776. ISSN: 2454-7077. https://doi.org/10.9734/acri/2024/v24i5752
LORDAN S, Ross RP, Stanton C. 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs. 9(6): 1056-1100. ISSN: 1660-3397. https://doi.org/10.3390/md9061056
MEGALATHAN A, Kumarage S, Dilhari A, Weerasekera MM, Samarasinghe S, Kottegoda N. 2016. Natural curcuminoids encapsulated in layered double hydroxides: a novel antimicrobial nanohybrid. Chemistry Central Journal. 10:1-10. ISSN: 1752-153X. https://doi.org/10.1186/s13065-016-0179-7
NGO DH, Wijesekara I, Voa TS, Ta QV, Kim SK. 2011. Marine foodderived functional ingredients as potential antioxidants in the food industry: an overview. Food Research International. 44: 523–529. ISSN: 0963-9969.
https://doi.org/10.1016/j.foodres.2010.12.030
NOM-033-SAG/ZOO-2014. Norma Oficial Mexicana. Sacrificio humanitario de las aves. México. https://tinyurl.com/5n8jd5zb
OSUNA RI, López SCM, Burgos HC, Velázquez C, Soto NM, Hurtado OM. 2016. Antoxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharmaceutical biology. 54(10): 2196-210. ISSN: 1388-0209.
https://doi.org/10.3109/13880209.2016.1150305
RAJPUT N, Muhammad N, Yan R, Zhong X, Wang T. 2013. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. The Journal of Poultry Science. 50(1): 44-52. ISSN: 1346-7395. https://doi.org/10.2141/jpsa.0120065
RAPOSO MFJ, Morais RMSC, Morais AMMB. 2013. Health applications of bioactive compounds from marine microalgae. Life Science. 93(15): 479–486. ISSN: 0024-3205. https://doi.org/10.1016/j.lfs.2013.08.002
ROSTAGNO HS, Teixeira LF, Hannas MI, López J, Kazue N, Guilherme F. 2017. Tablas brasileñas para aves y cerdos: composición de alimentos y requerimientos nutricionales. Departamento de Zootecnia, Universidad Federal de Viçosa, Viçosa, Brasil. Pp. 347-362. ISBN: 978-85-8179-122-7.
SÁNCHEZ CD, García UM, Rendón GJ, Ramírez AM, Chi-ME, Chávez M. 2021. Efecto de los polisacáridos sulfurados marinos como inmunomoduladores de la respuesta ante la vacunación en pollo de engorda. Abanico veterinario. 11, e2021-15. ISSN: 2448-6132. https://www.scielo.org.mx/pdf/av/v11/2448-6132-av-11-e406-en.pdf
SARASWATI TR, Manalu W, Ekastuti DR, Kusumorini N. 2013. Increased egg production of Japanese quail (Cortunix japonica) by improving liver function through turmeric powder supplementation. International Journal of Poultry Science. 12(10): 601-614. ISSN: 1682-8356. https://scialert.net/abstract/?doi=ijps.2013.601614
SARASWATI TR, Tana S. 2016. Effect of turmeric powder supplementation to the age of sexual maturity, physical, and chemical quality of the first japanese quail’s (Coturnix japonica) egg. Biosaintifika: Journal of Biology & Biology Education. 8(1):18-24. ISSN: 2085-191X. https://scialert.net/abstract/?doi=ijps.2013.601.614
SARI M, Işık S, Önk K, Tilki M, Kırmızıbayrak T. 2012. Efects of layer age and diferent plumage colors on external and internal egg quality characteristics in Japanese quails (Coturnix coturnix japonica). European Poultry Science (EPS) Archiv für Gefügelkunde, 76(4): 254–258. ISSN 0003-9098. Effects of layer age and different plumage colors on external and internal egg quality characteristics in Japanese quails (Coturnix coturnix japonica) - European Poultry Science
SAS Institute. 2017. Statistical Analysis Software SAS/STAT®. version 9.33, Cary, N.C., USA: SAS Institute Inc., ISBN: 978-1-60764-599-3.
http://www.sas.com/en_us/software/analytics/stat.html
SAMANYA M, Yamauchi KE. 2002. Alteraciones histológicas de las vellosidades intestinales en pollos alimentados con Bacillus subtilis var. natto seco. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 133 (1): 95-104. ISSN: 1095-6433. https://doi.org/10.1016/S1095-6433(02)00121-6
SONG X, Yin Z, Zhao X, Zhao X, Cheng A, Renyong J, Yuan G, Xu J, Fan Q, Zhao L, Su G, Ye G, Shil F. 2013. Antiviral activity of sulfated Chuanmingshen violaceum polysaccharide against Newcastle disease virus. Journal of General Virology. 94: 2164-2174. ISSN: 0022-1317. https://doi.org/10.1099/vir.0.054270-0
SONG X, Zhang Y, Yin Z, Zhao X, Lian X, He C, Lizi Y, Cheng L, Ling Z, Gang Y, Fei S, Gang S, Jia R. 2015. Antiviral effect of sulfated Chuanmingshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus. Elsevier, Virology. 476: 316-322. ISSN: 1098-5514. https://doi.org/10.1016/j.virol.2014.12.030
SWATSON HK, Gous R, Iji PA, Zarrinkalam R. 2002. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens. Animal Research. 51(6): 501-515. ISSN: 1627-3583. https://doi.org/10.1051/animres:2002038
TODEN EA, Theiss AL, Wang X, Goel A. 2017. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Scientific reports. 7(1): 814. ISSN: 2045-2322. https://doi.org/10.1038/s41598-017-00812-6
WANG D, Huang H, Zhou L, Li W, Zhou H, Hou G, Liu J, Hu L., 2015. Effects of dietary supplementation with turmeric rhizome extract on growth performance, carcass characteristics, antioxidant capability, and meat quality of wenchang broiler chickens. Italian Journal of Animal Science. 14: 3870. ISSN: 1594-4077.
https://doi.org/10.4081/ijas.2015.3870
XIE Z, Shen G, Wang Y, Wu C. 2019. La suplementación con curcumina regula el metabolismo lipídico en pollos de engorde. Poultry Science. 98(1):422-429. ISSN: 1525-3171. https://doi.org/10.3382/ps/pey315
