Recientes avances en el estudio de la termorregulación en animales homeotermos: termogénesis, termólisis y homeostasis térmica
Palabras clave:
vasoconstricción cutánea, tejido adiposo pardo, termogénesis no tiritanteResumen
La termorregulación en animales homeotermos es un proceso fisiológico activo y permanente que equilibra la generación (termogénesis) y la pérdida (termólisis) de calor para mantener una homeostasis térmica, crucial ante el cambio climático. Los animales homeotermos regulan su temperatura corporal (37 - 42°C) mediante mecanismos neurales y periféricos, donde en especial la zona preóptica del hipotálamo, actúa como un núcleo integrador, aunque hay evidencia de la existencia de redes descentralizadas asociadas al hipotálamo que son complementarias. Existen estrategias para mantener la homeostasis ante el frío como la vasoconstricción cutánea, la termogénesis no tiritante (actividad del tejido adiposo pardo) y la contracción muscular esquelética con el fin de conservar el calor corporal. En contraste, el calor induce una vasodilatación capilar, sudoración y jadeo para facilitar la termólisis o pérdida de calor. Los canales de potencial receptor transitorio y las neuronas GABAérgicas/glutamatérgicas modulan estas respuestas, con implicaciones directas en los procesos de hipertermia/hipotermia. La asimetría fisiológica entre límites superiores e inferiores de la homeostasis térmica, hace evidente la vulnerabilidad de los organismos a las temperaturas extremas fuera de la zona de confort.
http://dx.doi.org/10.21929/abavet2025.13
e2025-34
Citas
ANDRADE DV, Gavira RSB, Tattersall GJ. 2015. Thermogenesis in ectothermic vertebrates. Temperature. 2:454-454. ISSN 2332-8940.
https://doi.org/10.1080/23328940.2015.1115570
BASTOS B, Pradhan N, Tarroso P, Brito JC, Boratyński Z. 2021. Environmental determinants of minimum body temperature in mammals. Journal of Vertebrate Biology. 70:1-12. ISSN 2694-7684. https://doi.org/10.25225/jvb.21004
BEALE PK, Marsh KJ, Foley WJ, Moore BD. 2017. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biological Reviews. 93:674-692. ISSN 1469-185X. http://dx.doi.org/10.1111/brv.12364
BIENBOIRE-FROSINI C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. 2023. The role of brown adipose tissue and energy metabolism in mammalian thermoregulation during the perinatal period. Animals. 13:2173. ISSN 2076-2615. https://doi.org/10.3390/ani13132173
BLATTEIS CM. 2016. A personal recollection: 60 years in thermoregulation. Temperature. 3:1-7. ISSN 2332-8940. https://doi.org/10.1080/23328940.2016.1148524
BLOMQVIST A. 2024. Prostaglandin E2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature. 11:309-317. ISSN 2332-8940. https://doi.org/10.1080/23328940.2024.2401674
CHARKOUDIAN N. 2016. Human thermoregulation from the autonomic perspective. Autonomic Neuroscience. 196:1-2. ISSN 1566-0702.
https://doi.org/10.1016/j.autneu.2016.02.007
CHEN Z, Zhang P, Liu T, Qiu X, Li S, Lin JD. 2024. Neuregulin 4 mediates the metabolic benefits of mild cold exposure by promoting beige fat thermogenesis. Journal of Clinical Investigation Insight. 9. ISSN 2379-3708. https://doi.org/10.1172/jci.insight.172957
CHENG C-W, Zheng J. 2021. Distribution and assembly of TRP ion channels. In Zhou L (Ed.), Ion Channels in Biophysics and Physiology. Springer Nature.
https://doi.org/10.1007/978-981-16-4254-8
CHONDRONIKOLA M, Porter C, Malagaris I, Nella AA, Sidossis LS. 2017. Brown adipose tissue is associated with systemic concentrations of peptides secreted from the gastrointestinal system and involved in appetite regulation. European Journal of Endocrinology. 177:33-40. https://doi.org/10.1530/EJE-16-0958
CHU DT, Gawronska KB. 2017. Brown and brite adipocytes: same function, but different origin and response. Biochimie. 138:102-105. ISSN 0300-9084.
https://doi.org/10.1016/j.biochi.2017.04.017
CRAMER MN, Jay O. 2016. Biophysical aspects of human thermoregulation during heat stress. Autonomic Neuroscience. 196:3-13. ISSN 1566-0702.
https://doi.org/10.1016/j.autneu.2016.03.001
CUNNINGHAM JG, Bradley GK. 2014. Cunninhham - Fisiologia Veterinaria. (5ta ed.). Elsevier. ISBN 9788490223178.
FLOURIS AD. 2015. Shaping our understanding of endothermic thermoregulation. Temperature. 2:328-329. ISSN 2332-8940.
https://doi.org/10.1080/23328940.2015.1058321
HANKIR MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther‐Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, Hesse S, Seibyl JP, Sabri O, Heiker JT, Blüher M, Pfeifer A, Brust P, Fenske WK. 2016. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Molecular Medicine. 8:796-812. ISSN 1757-4676. https://doi.org/10.15252/emmm.201506085
HU Y, Converse C, Lyons MC, Hsu WH. 2017. Neural control of sweat secretion: a review. British Journal of Dermatology. ISSN 1365-2133.
http://dx.doi.org/10.1111/bjd.15808
IMERI L. 2017. Thermoregulation as a non-unified system: a difficult to teach concept. Temperature. 4:1-8. ISSN 2332-8940. https://doi.org/10.1080/23328940.2017.1281872
KAMM GB, Siemens J. 2017. The TRPM2 channel in temperature detection and thermoregulation. Temperature. 4:21-23. ISSN 2332-8940.
https://doi.org/10.1080/23328940.2016.1258445
KINGMA BRM. 2016. The link between autonomic and behavioral thermoregulation. Temperature. 3:195-196. ISSN 2332-8940.
https://doi.org/10.1080/23328940.2016.1168535
KRUSE V, Neess D, Færgeman NJ. 2017. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends in Endocrinology and Metabolism. 28:669-683. ISSN 1043-2760. https://doi.org/10.1016/j.tem.2017.06.001
KUHT J, Farmery AD. 2021. Body temperature and its regulation. Anaesthesia & Intensive Care Medicine. 22:657-662. ISSN 1472-0299.
https://doi.org/10.1016/j.mpaic.2021.07.004
LIEDTKE WB. 2017. Deconstructing mammalian thermoregulation. Proceedings of the National Academy of Sciences of the United States of America. 114:1765-1767. ISSN 0027-8424. https://doi.org/10.1073/pnas.1620579114
MASUDA Y, Sakai R, Kato I, Nagashima K. 2022. Thermoregulatory heat-escape/cold-seeking behavior in mice and the influence of TRPV1 channels. PLoS One. 17:e0276748. ISSN 1932-6203. https://doi.org/10.1371/journal.pone.0276748
MORRISON SF. 2016a. Central control of body temperature. F1000Research. 5:F1000 Faculty Rev-1880. ISSN 2046-1402. https://doi.org/10.12688/f1000research.7958.1
MORRISON SF. 2016b. Central neural control of thermoregulation and brown adipose tissue. Autonomic Neuroscience. 196:14-24. ISSN 1566-0702
https://doi.org/10.1016/j.autneu.2016.02.010
MORRISON SF, Nakamura K. 2011. Central neural pathways for thermoregulation. Frontiers in Bioscience. 16:74-104. ISSN 1093-9946.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051412/
MOTA-ROJAS D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. 2024. Hypothalamic neuromodulation of hypothermia in domestic animals. Animals. 14:513. ISSN 2076-2615.
https://doi.org/10.3390/ani14030513
NILSSON JÅ, Molokwu MN, Olsson O. 2016. Body temperature regulation in hot environments. PLoS One. 11:e0161481. ISSN 1932-6203.
https://doi.org/10.1371/journal.pone.0161481
RICQUIER D. 2024. The brown adipocyte: What a story! Annales d'Endocrinologie. 85:252. ISSN 0003-4266. https://doi.org/10.1016/j.ando.2024.05.018
ROMANOVSKY AA. 2007. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 292:R37-R46. ISSN 0363-6119. https://doi.org/10.1152/ajpregu.00668.2006
SARUBBI J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. 2024. Hypothalamic neuromodulation and control of the dermal surface temperature of livestock during hyperthermia. Animals. 14:1745. ISSN 2076-2615. https://doi.org/10.3390/ani14121745
SCRIVEN JJ, Whitehorn PR, Goulson D, Tinsley MC. 2016. Bergmann's Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species. PLoS One. 11:e0163307. ISSN 1932-6203.
https://doi.org/10.1371/journal.pone.0163307
SHI LL, Fan WJ, Zhang JY, Zhao XY, Tan S, Wen J, Cao J, Zhang XY, Chi QS, Wang DH, Zhao ZJ. 2017. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 212:35-44. ISSN 1095-6433. https://doi.org/10.1016/j.cbpa.2017.07.002
SONG K, Wang H, Kamm GB, Pohle J, Reis FdC, Heppenstall P, Wende H, Siemens J. 2016. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science. 353:1393-1398. https://doi.org/10.1126/science.aaf7537
SUITO T, Tominaga M. 2024. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits. 18:1435757. ISSN 1662-5110. https://doi.org/10.3389/fncir.2024.1435757
TAN CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. 2016. Warm-sensitive neurons that control body temperature. Cell. 167:47-59.e15. ISSN 0092-8674. https://doi.org/10.1016/j.cell.2016.08.028
WANG S, Yang X. 2017. Inter-organ regulation of adipose tissue browning. Cellular and Molecular Life Sciences. 74:1765-1776. ISSN 1420-9071.
https://doi.org/10.1007/s00018-016-2420-x
YAHIRO T, Kataoka N, Nakamura K. 2023a. Exploration of thermosensory central neural pathways that drive thermoregulatory behavior. Physiology. 38:5730524. https://doi.org/10.1152/physiol.2023.38.s1.5730524
YAHIRO T, Kataoka N, Nakamura K. 2023b. Two ascending thermosensory pathways from the lateral parabrachial nucleus that mediate behavioral and autonomous thermoregulation. Journal of Neuroscience. 43:5221-5240.
https://doi.org/10.1523/JNEUROSCI.0643-23.2023
YAHIRO T, Kataoka N, Nakamura Y, Nakamura K. 2017. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Scientific Reports. 7:5031. ISSN 2045-2322.
https://doi.org/10.1038/s41598-017-05327-8
YONESHIRO T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K, Katsuragi Y, Kameya T, Sugie H, Saito M. 2017. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. The American Journal of Clinical Nutrition. 105:873-881. ISSN https://doi.org/10.3945/ajcn.116.144972
ZHAO Z-D, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, Chen W, Ni X, Lin J-K, Yang J, Xu X-H, Shen WL. 2017. A hypothalamic circuit that controls body temperature. Proceedings of the National Academy of Sciences. 114:2042-2047.
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
