Efecto de la suplementación con metionina de zinc en el desempeño productivo y morfología del epitelio intestinal en cerdos criados en ambiente caluroso o fresco

Juan Romo-Valdez, Rubén Barajas-Cruz, Idalia Enríquez-Verdugo, Gabriela Silva-Hidalgo, Héctor Güémez-Gaxiola, Javier Romo-Rubio

Resumen

Con el objetivo de determinar el efecto de la suplementación con metionina de zinc durante el periodo de gestación-lactación (GL) y desarrollo-finalización (DF) en el desempeño productivo y durante DF en la morfología del epitelio intestinal en cerdos criados en ambiente caluroso o fresco, se realizaron dos experimentos (Exp. 1, en la época calurosa; Exp. 2, en la época fresca del año). Se utilizaron 192 cerdos (96 por Exp.) con una edad promedio de 79 d y 26.39±DE4.97 kg de peso, hijos de cerdas que recibieron o no, alimento adicionado con 100 mg de Zn/kg, a partir de los 80 a 114 días de gestación y durante 21 d de lactación (GL). En cada experimento, los cerdos fueron asignados a uno de cuatro tratamientos en un diseño completamente al azar con arreglo factorial 2 x 2. Los tratamientos fueron: T1 (Testigo; n = 24), madres no suplementadas-cerdos no suplementados; T2 (Zn DF; n = 24), madres no suplementadas-cerdos suplementados con 100 mg de Zn/kg alimento; T3 (Zn GL; n = 24), madres suplementadas-cerdos no suplementados y, T4 (Zn GL + Zn DF; n = 48), madres suplementadas + cerdos suplementados. La suplementación con 100 mg de Zn/kg de alimento durante GL y DF no modificó el desempeño productivo de los cerdos durante el periodo completo de estudio. La relación altura de la vellosidad: profundidad de la cripta fue mayor (p <0.01) en los cerdos suplementados con Zn (3.36 vs. 2.77) durante la época de calor. Se observó una interacción (p<0.02) entre el clima y la suplementación con metionina de zinc en la profundidad de la cripta y en la relación V: C. La suplementación durante GL tendió (P = 0.06) a bajar la mortalidad de los cerdos en desarrollo-finalización en la época fresca. Los resultados permiten concluir que la adición de metionina de zinc a la dieta mejora la integridad del epitelio intestinal en los cerdos en desarrollo-finalización criados bajo ambiente caluroso, y la suplementación durante el periodo de gestación y lactación reduce la mortalidad durante la engorda.

Palabras clave

cerdo; metionina de zinc; epitelio intestinal; respuesta productiva

Referencias

AL MASRI S, Hünigen H, Al Aiyan A, Rieger J, Zentek J, Richardson K, Plendl J. 2015. Influence of age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine. Journal Swine Health and Production. 23(4):186–203. ISSN‎: ‎1537-209X. http://dx.doi.org/10.13140/RG.2.1.1806.5043

BOUWHUIS MA, Sweeney T, Mukhopadhya A, Thornton K, McAlpine PO and O’Doherty JV. 2016. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. Journal of Animal Physiology and Animal Nutrition. 101(6):1273-1285. ISSN: 0931-2439. http://dx.doi.org/10.1111/jpn.12647

CHAND N, Naz S, Khan A, Khan S, Khan RU. 2014. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. International Journal of Biometeorology. 58(10):2153–2157. ISSN: 1432-1254. http://dx.doi.org/10.1007/s00484-014-0815-7

CHASAPIS CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. 2012. Zinc and human health: an update. Archives of Toxicology. 86(4):521–534. ISSN: 0340-5761. http://dx.doi.org/10.1007/s00204-011-0775-1

CIAD. Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Culiacán. Sistema Estadístico del Clima Automatizado de Sinaloa. 2015. http://187.141.135.166/CIAD/DatosPorPeriodoNuevo.aspx

CIAD. Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Culiacán. Sistema Estadístico del Clima Automatizado de Sinaloa. 2016. http://187.141.135.166/CIAD/DatosPorPeriodoNuevo.aspx

CRUZ JBF, Soares HF. 2011. Uma revisão sobre o zinco. Ensaios Ciência Ciências Biológicas Agrárias Saúde. 15: 207–222. ISSN: 1415-6938. https://www.redalyc.org/pdf/260/26019329014.pdf

ESHEL GM, Safar P, Stezoski W. 2001. The role of thegut in the pathogenesis of death due to hyperthermia. The American Journal of Forensic Medicine and Pathology. 22(1):100–104. ISSN: 0195-7910. http://dx.doi.org/10.1097/00000433-200103000-00022

LAGANA C, Ribeiro AML, Kessler A, Kratz LR, Pinheiro CC. 2007. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. Revista Brasileira de Ciencia Avícola. 9(1):01–06. ISSN: 1806-9061. http://dx.doi.org/10.1590/S1516-635X2007000100006

LAMBERT GP, Gisolfi CV, Berg DJ, Moseley PL, Oberley LW, Kregel KC. 2002. Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. Journal Applied of Physiology. 92(4):1750–1761. ISSN: 1522-1601. http://dx.doi.org/10.1152/japplphysiol.00787.2001

LAMBERT GP. 2009. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal of Animal Science. 87:E101–E108. ISSN‎: ‎1525-3163. http://dx.doi.org/10.2527/jas.2008-1339

LI BT, van Kessel AG, Caine WR, Huang SX, Kirkwood RN. 2001. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Canadian Journal of Animal Science. 81(4):511–516. ISSN: 0008-3984. https://doi.org/10.4141/A01-043

LI Y, Cao Y, Zhou X, Wang F, Shan T, Li Z, Xu W, Li C. 2015. Effects of zinc sulfate pretreatment on heat tolerance of Bama miniature pig under high ambient temperature. Journal of Animal Science. 93:3421–3430. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2015-8910

LONG L, Chen J, Zhang Y, Liang X, Ni H, Zhang B, Yin Y. 2017. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. Plos ONE. 12(8):e0182550. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0182550

MADER TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84:712-719. ISSN: 0021-8812. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1622&context=animalscifacpub

MANI V, Weber TE, Baumgard LH, Gabler NK. 2012. Growth and development symposium: Endotoxin, inflammation, and intestinal function in livestock. Journal of animal Science. 90 (5):1452–1465. ISSN: 0021-8812. http://dx.doi.org/10.2527/jas.2011-4627

MAO X, Qi S, Yu B, He J, Yu J, Chen D. 2013. Zn (2+) and L-isoleucine induce the expressions of porcine beta-defensins in IPEC-J2 cells. Molecular Biology Reports. 40(2): 1547–1552. ISSN: 1573-4978. http://dx.doi.org/10.1007/s11033-012-2200-0

MARET W. 2013. Zinc biochemistry: From a single zinc enzyme to a key element of life. Advances in Nutrition. 4(1):82−91. ISSN: 2161-8313. http://dx.doi.org/10.3945/an.112.003038.

MARREIRO DN, Cruz KJC, Morais JBS, Beserra JB, Severo, de Oliveira ARS. 2017. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants, 6 (2): 24. ISSN: 2076-3921. http://dx.doi.org/10.3390/antiox6020024

McDOWELL LR. 2003. Zinc. En Minerals in Animal and Human Nutrition. 2nd ed. Elsevier, Amsterdam, The Netherlands. Pp. 644. ISBN: 978-0-444-51367-0; https://www.sciencedirect.com/book/9780444513670/minerals-in-animal-and-human-nutrition

MING-ZHE L, Jie-Ting H, Yi-Hao T, Syuan-Yian M, Chao-Ming F, Tu-Fa L. 2016. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal. 87: 1379–1385. ISSN: 1740-0929. http://dx.doi.org/10.1111/asj.12579

NOM-033. 2014. NOM-033-SAG. ZOO-2014. Métodos para dar muerte a los animales domésticos y silvestres, 26. https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-033-sag-zoo-2014-metodos-para-dar-muerte-a-los-animales-domesticos-y-silvestres

NRC (National Research Council). 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC. USA.Pp. 420. ISBN: 978-0-309-22423-9; https://www.nap.edu/catalog/13298/nutrient-requirements-of-swine-eleventh-revised-edition

PAYNE RL, Bidner TD, Fakler TM and LL Southern. 2006. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation. Journal of Animal Science. 84:2141-214. ISSN: 0021-8812, https://dx.doi.org/10.2527/jas.2005-627

PEARCE SC, Gabler NK, Ross JW, Escobar J, Patience JF, Rhoads RP, Baumgard LH. 2013a. The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science. 91:2108–2118. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2012-5738

PEARCE SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, Rhoads RP, Baumgard LH, Gabler NK. 2013b. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE. 8:E70215. ISSN: 1932-6203. http://dx.doi.org/10.1371/journal.pone.0070215

PEARCE SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, Gabler NK. 2013c. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. Journal of Animal Science. 91:5183–5193. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2013-6759

PEARCE SC, Sanz-Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. 2015. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism. Journal of Animal Science. 93:4702–4713. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas2015-9018

PEI X, Xiao Z, Liu L, Wang G, Tao W, Wanga M, Zou J, Leng D. 2018. Effects of Dietary Zinc Oxide Nanoparticles Supplementation on Growth Performance, Zinc Status, Intestinal Morphology, Microflora Population, and Immune Response in Weaned Pigs Running. Journal of the Science of Food and Agriculture. 99(3):1366-1374. ISSN: 1097-0010. http://dx.doi.org/10.1002/jsfa.9312

PROPHET E, Mills B, Arrington J, Sobón L. 1995. Métodos histotecnológicos.Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América. Washington DC. Registro de Patología de los Estados Unidos de América (ARP) e Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América (AFIP). ISBN: 1881041212 9781881041214; https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753

RAKHSHANDEH A, Dekkers JCM, Kerr BJ, Weber TE, English J, Gabler NK. 2012. Effect of immune system stimulation and divergent selection for residual feed intake on digestive capacity of the small intestine in growing pigs. Journal of animal Science. 90(Suppl. 4):233–235. ISSN: 0021-8812. http://dx.doi.org/10.2527/jas.53976

RENAUDEAU D, Gourdine JL, St-Pierre NR. 2011. A meta-analysis of the effects of high ambient temperature on growth performance of growing finishing pigs. Journal of Animal Science. 89(7):2220–2230. SSN: 1525-3163. http://dx.doi.org/10.2527/jas.2010-3329

RICHARDS JD, Fisher PM, Evans JL, Wedekind KJ. 2015. Greater bioavailability of chelated compared with inorganic zinc in broiler chicks in the presence or absence of elevated calcium and phosphorus. Open Access Animal Physiology. 7:97-109. ISSN: 1179-2779. https://doi.org/10.2147/OAAP.S83845

ROMO JM, Romo JA, Barajas R, Enríquez I, Silva G, Montero A. 2017. Efecto del consume de zinc orgánico en la respuesta productiva de la cerda y su camada. Abanico veterinario. 7(2):43-59. ISSN 2448-6132. http://dx.doi.org/10.21929/abavet2017.72.4

SANZ-FERNANDEZ MV, Pearce SC, Gabler NK, Patience JF, Wilson ME, Socha MT, Torrison JL, Rhoads RP, Baumgard LH. 2014. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 8:43–50. ISSN: 1751-732X. http://dx.doi.org/10.1017/S1751731113001961

SCHLEGEL P, Sauvant D, Jondreville C. 2013. Bioavailabiliy of zinc sources and their interaction with phytates in broilers and piglets. Animal. 7(1):47–59. ISSN: 1751-732X. http://dx.doi.org/10.1017/S1751731112001000

STEEL GD y Torrie JH. 1985. Bioestadística: Principios y Procedimientos. (2da. Ed.) McGraw-Hill, México, DF. Pp. 624. ISBN: 968-451495-6; https://www.academia.edu/35066774/Steel_Robert_G_-_Bioestadistica_Principios_Y_Procedimientos_2ed

ST-PIERRE NR, Cobanov B, Schnitkey G. 2003. Economic losses from heat stress by US livestock industries. Journal of Dairy Science. 86(Suppl):E52–E77. ISSN: 0022-0302. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

TANG M, Laarveld B, Van Kessel AG, Hamilton DL, Estrada A, Patience JF. 1999. Effect of segregated early weaning on postweaning small intestinal devel¬opment in pigs. Journal of Animal Science. 77(12):3191–3200. ISSN: 1525-3163. https://doi.org/10.2527/1999.77123191x

WAEYTENS A, De Vos M, Laukens D. 2009. Evidence for a Potential Role of Metallothioneins in Inflammatory Bowel Diseases. Mediators of Inflammation. Article ID 729172: 9 pages. ISSN: 0962-9351. http://dx.doi.org/10.1155/2009/729172

WANG X, Valenzano MC, Mercado JM, Zurbach EP, Mullin JM. 2013. Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Digestive Diseases and Sciences. 58(1): 77–87. ISSN: 0163-2116. http://dx.doi.org/10.1007/s10620-012-2328-8

ZHANG B, Guo Y. 2009. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. The British Journal of Nutrition. 102:687–693. ISSN‎: ‎1475-2662. http://dx.doi.org/10.1017/S0007114509289033

Enlaces refback

  • No hay ningún enlace refback.