Efecto de la temperatura de extrusión, humedad y contenido del aceite de girasol sobre las propiedades funcionales y digestibilidad de alimentos para ganado bovino

Efren Delgado, Óscar Alvarado-González, Hiram Medrano-Roldán, Jesús Rodríguez-Miranda, Francisco Carrete-Carreón, Damián Reyes-Jáquez


La preparación de productos extruidos con alto contenido de aceite presenta un desafío tecnológico, debido a que el aceite disminuye la fuerza mecánica específica pero también actúa como lubricante y forma complejos de almidón y lípidos; disminuyendo así la gelatinización del almidón. El objetivo de esta investigación fue evaluar el efecto de la temperatura, la humedad y el contenido de aceite de girasol en el proceso de extrusión de alimento para ganado bovino. Se usaron dos ingredientes principales para cada dieta: alfalfa (Medicago sativa L.) y frijol (Phaseolus vulgaris L.). Los resultados obtenidos mostraron que la alta temperatura, la humedad y el contenido de aceite, disminuyeron la densidad aparente y la dureza (P < 0.05). La interacción entre el contenido de aceite y la temperatura aumentó tanto la densidad aparente como la dureza, mientras que la interacción entre el contenido de humedad y aceite aumentó la dureza (P < 0.05). La optimización se realizó con base en las características fisicoquímicas de alimentos comerciales, mostrando que las mejores dietas de frijol se obtuvieron a 121ºC, 14% de contenido de humedad con 0% de aceite de girasol; 120ºC y 16% de contenido de humedad con 3.5% de aceite de girasol; y, 142ºC y 15% de contenido de humedad con 7% de aceite de girasol. La degradabilidad efectiva varió de 87.4 a 90.4% para todas las dietas extruidas; y ninguno de ellos mostró diferencias significativas entre el frijol y la alfalfa (P < 0.05), lo que abre una gran oportunidad potencial de producir altas concentraciones de CLA a partir del aceite de girasol a nivel ruminal.

Palabras clave

alimento para ganado bovino; digestibilidad; aceite de girasol

Texto completo:

PDF (English)


ABU-GHAZALEH AA and Holmes LD. 2006. Diet Supplementation with Fish Oil and Sunflower Oils to increase Conjugated Linoleic Acid Levels in Milk Fat of Partially Grazing Dairy Cows. J.Dairy Sci. 90:2897-2904. https://doi.org/10.3168/jds.2006-684

ABU-HARDAN M, Hill EH and Farhat I. 2011. Starch conversion and expansion behavior of wheat starch cooked with either palm, soybean or sunflower oils in a co-rating intermeshing twin-screw extruder. International Journal of Food Science and Technology. 46:268-274. https://doi.org/10.1111/j.1365-2621.2010.02473.x

ANKOM. 2017. “In vitro true digestibility using the DAISY incubator”. https://www.ankom.com/sites/default/files/document-files/Method_3_Invitro_D200_D200I.pdf

AOAC. 2019. Official Methods of Analysis. Association of Official Analytical Chemists International. Gaithersburg, Maryland. 21st ed. Vol. I. 700 p.

BYERS FM and Schelling GT. 1993. Lipids in ruminant nutrition. In: Church DC, editor. The ruminant animal: digestive, physiology and nutrition. 2nd ed. New Jersey, U.S.A: Waveland Press Inc. Pp. 298-312. ISBN 10: 0-88133-740-4. ISBN 13: 978-0-88133-740-2.

CHILLARD Y, Glasser F, Ferlay A, Bernard L, Rouel J and Doreau M. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109:828-855. https://doi.org/10.1002/ejlt.200700080

COBLENTZ WK and Hoffman PC. 2009. Effects of bale moisture and bale diameter on spontaneous heating, dry matter recovery, in vitro true digestibility, and in situ disappearance kinetics of alfalfa-orchardgrass hays. J. Dairy Sci. 92:2853- 2874. https://doi.org/10.3168/jds.2008-1921

DE PILLI T, Derossi A, Talja RA, Jouppila K and Secerini C. 2011. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innovate Food Science and Engineering Tech. 12:610-616. https://doi.org/10.1016/j.ifset.2011.07.011

DING QB, Ainsworth P, Tucker P, Marson H. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering. 66:283-289. https://doi.org/10.1016/j.jfoodeng.2004.03.019

EL-SAIDY EA, Faraouk S and Adb El-Ghany HM. 2011. Evaluation of different seed priming on seeding growth, yield and quality components in two sunflower (Helianthus annus L.) cultivars. Trends in Applied Sciences Research. 6:977-991. https://doi.org/10.3923/tasr.2011.977.991

GONZÁLEZ-Valadez M, Munoz-Hernández G and Sánchez-López R. 2008. Design and evaluation of an extruder to convert crop residues to animal feed. Biosystems Engineering. 100:66-78. https://doi.org/10.1016/j.biosystemseng.2008.02.002

GUJSKA E and Khan K. 1990. Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. J. Food Sci. 55:466-469. https://doi.org/10.1111/j.1365-2621.1990.tb06788.x

HERNÁNDEZ-Hernández E, Ávila-Orta CA, Hsiao BS, Castro-Rosas J, Gallegos-Infante JA, Morales-Castro J, Ochoa-Martínez LA, Gómez-Aldapa CA. 2011. Synchrotron X-ray scattering analysis of the interaction between corn starch and an exogenous lipid during hydrothermal treatment. Journal of Cereal Science. 54:69-75. https://doi.org/10.1016/j.jcs.2011.03.001

IKPEME ECA, Osuchukwu NC and Oshiele L. 2010. Functional and sensory properties of wheat (Aestium triticium) and taro flour (Colocasia esculenta) composite bread. Afr. J. Food Sci. 4:248-253. https://academicjournals.org/journal/AJFS/article-full-text-pdf/4AAAB0C23570

INIESTRA González, José J., Ibarra Pérez, Francisco J., Gallegos Infante, José A., Rocha Guzmán, Nuria E. y González Laredo, Rubén F. Factores antinutricios y actividad antioxidante en variedades mejoradas de frijol común (Phaseolus vulgaris). Agrociencia. 2005;39(6):603-610. [fecha de Consulta 21 de Julio de 2020]. ISSN: 1405-3195. Disponible en: https://www.redalyc.org/pdf/302/30239603.pdf

LIU L, Kerry JF and Kerry JP. 2006. Effect of food ingredients and selected lipids on the physical properties of extruded edible films casings. International Journal of Food Science and Technology. 41:295-302. https://doi.org/10.1111/j.1365-2621.2005.01063.x

PARIZA MW, Park Y and Cook ME. 2001. The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research. 40:283-298. https://doi.org/10.1016/S0163-7827(01)00008-X

PETHERICK JC. 2005. Animal welfare issues associated with extensive livestock production; the northern Australian beef cattle industry. Applied Animal Behavior Science. 92:211-234. https://doi.org/10.1016/j.applanim.2005.05.009

POULSON CS, Shiman TR, Ure AL, Cornforth D and Olson KC. 2004. Conjugated linolenic acid content of beef from cattle fed diets containing high grain, CLA, or raised on forages. Livestock Production Science. 91:117-128. https://doi.org/10.1016/j.livprodsci.2004.07.012

REYES-Jáquez D, Casillas F, Flores N, Andrade-González I, Solís-Soto A, Medrano-Roldan H, Carrete F, Delgado E. 2012. The effect of Glandless Cottonseed Meal Content and Process Parameters on the Functional Properties of Snack during Extrusion Cooking. Food and Nutrition Sciences. 3:1716-1725. https://doi.org/10.4236/fns.2012.312225

REYES-Jáquez D, Vargas-Rodríguez J, Delgado-Licón E, Rodríguez-Miranda J, Araiza-Rosales E, Andrade-González I, Solís-Soto A And Medrano-Roldan H. 2011. Optimization of the Extrusion Process Temperature and moisture Content on the Functional Properties and in vitro Digestibility of Bovine Cattle Feed Made out of Waste Bean Flour. Journal of Animal Science Advances. 1:100-110. ISSN: 2251-7219 https://www.researchgate.net/publication/245536642_Optimization_of_the_Extrusion_Process_Temperature_and_Moisture_Content_on_the_Functional_Properties_and_in_vitro_Digestibility_of_Bovine_Cattle_Feed_Made_out_of_Waste_Bean_Flour

RODRÍGUEZ-Miranda J, Delgado-Licón E, Ramírez-Wong B, Solís-Soto A, Vera MA, Gómez-Aldapa C, Medrano-Roldán H. 2012. Effect of Moisture, Extrusion Temperature and Screw Speed on Residence Time, Specific Mechanical Energy and Psychochemical Properties of Bean Four and Soy Protein Aquaculture Feeds. Journal of Animal Production Advances. 2:65-73. ISSN: 2251-7677. https://www.researchgate.net/publication/246044402_Effect_of_Moisture_Extrusion_Temperature_and_Screw_Speed_on_Residence_Time_Specific_Mechanical_Energy_and_Psychochemical_Properties_of_Bean_Four_and_Soy_Protein_Aquaculture_Feeds

SERRANO X, Baucells MD, Barroeta AC and Puchal F. 1998. Effects of extruded diet on the productive performance of weaning and post-weaned calves. Animal Feed Science and Technology. 70:275–279. https://doi.org/10.1016/S0377-8401(97)00082-5

SINGH S, Gamlath S and Walkeling L. 2007. Nutritional aspects of food extrusion: a review. J. Food Sci. and Technol. 42:916-929. https://doi.org/10.1111/j.1365-2621.2006.01309.x

SOLANAS E, Castrillo C, Balcells J and Guada JA. 2004. In situ ruminal degradability and intestinal digestion of raw and extruded legume seeds and soya bean meal protein. Journal of Animal Physiology and Animal Nutrition. 89:166-171. https://doi.org/10.1111/j.1439-0396.2005.00555.x

WANG WM, Klopfenstein CF and Ponte JG. 1993. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chem. 70:707-711. https://agris.fao.org/agris-search/search.do?recordID=US9434019

Enlaces refback

  • No hay ningún enlace refback.