Aprovechamiento de desechos de pescado y cáscara de piña para producir ensilado biológico

José Ramírez-Ramírez, José Loya-Olguín, José Ulloa, Petra Rosas-Ulloa, Ranferi Gutiérrez-Leyva, Yessica Silva-Carrillo

Resumen

Se formularon seis tratamientos para elaborar ensilado biológico con desechos de pescado, rastrojo de maíz, melaza, cáscara de piña (CP) [15, 30 y 45%] e inóculo Lactobacillus sp. o Lactobacillus B2. Los ensilados de cada tratamiento se hicieron por triplicado y se incubaron a 30°C durante 0, 2, 4, 7 y 14 días con el propósito de evaluar la acidificación bajo un diseño factorial 3 x 2 x 5. A los ensilados se les determinó la composición química y la digestibilidad in vitro de la materia seca (DIVMS) al terminar la fermentación. La acidificación más alta (p<0.05) la presentaron los tratamientos con CP 15 y 30% y Lactobacillus B2 a los 7 días. Con 15% de CP se obtuvo el mayor contenido de materia seca (39.3%) (p<0.05) y la proteína cruda (26.5 a 31%, rango) fue igual (p>0.05). La concentración mayor de lípidos (9.85%) se presentó en los tratamientos con CP 30 y 45% y Lactobacillus B2. Las fracciones de fibra detergente disminuyeron al aumentar el nivel de CP y la DIVMS más alta (82.9%) se presentó en los ensilados al utilizar Lactobacillus B2, independientemente del nivel de CP (p<0.05). Los ensilados obtenidos son una alternativa para alimentación de rumiantes.

Palabras clave

desechos de pescado; cáscara de piña; ensilado biológico; alimentación de rumiantes

Referencias

AOAC (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS). 2005. Official Methods of Analysis of the AOAC. 18ed. AOAC International, Gaithersburg, MD, USA. ISBN 0-935584-77-3. http://www.eoma.aoac.org/

CASTILLO GWE, Sánchez SHA, Ochoa MGM. 2019. Evaluación del ensilado de residuos de pescado y de cabeza de langostino fermentado con Lactobacillus fermentus aislado de cerdo. Revista de investigaciones Veterinarias del Perú. 30(4):1456-1469. ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i4.17165

DAMASCENO KA, Alvarenga CA, Dos Santos G, Lacerda L, Bastianello PC, Leal P, Arantes-Pereira L. 2016. Development of cereal bars containing pineapple peel flour (Annanas Comosus L. Merril). Journal of Food Quality. 39:417-424. ISSN: 1745-4557. https://doi.org/10.1111/jfq.12222

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) 2018. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. Licencia: CC BY-NC- SA 3.0 IGO. Pp. 2. ISBN 978-92-5-130688-8. http://www.fao.org/3/I9540ES/i9540es.pdf

FAOSTAT (Statistical Database of the Food and Agriculture Organization of the United Nations). 2018. http://www.fao.org/faostat/es/#data/QC

GERON LJV, Zeoula LM, Vidotti RM, Matsushita M, Kazama R, Caldas SF, Fareli F. 2007. Chemical characterization, dry matter and crude protein ruminal degradability and in vitro intestinal digestion of acid and fermented silage from tilapia filleting residue. Animal Feed Science and Technology. 136:226-239. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2006.09.006

GHALY AE, Ramakrishnan VV, BroOKS MS, Budge SM, Dave D. 2013. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. Journal of Microbial and Biochemical Technology. 5(4):107-129. ISSN: 1948-5948. http://dx.doi.org/10.4172/1948-5948.1000110

GHOSH PR, Fawcett D, Sharma SB, Poinern GEJ. 2016. Progress towards sustainable utilization and management of food wastes in the global economy. International Journal of Food Science. 2016:1-22. ISSN: 2314-5765.

http://downloads.hindawi.com/journals/ijfs/2016/3563478.pdf

JINI R, Swapna HC, Amit KR, Vrinda R, Halami PM, Sachindra NM, Bhaskar N. 2011. Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilization of fish processing waste. Brazilian Journal of Microbiology. 42:1516-1525. ISSN: 1517-8382.

https://doi.org/10.1590/S1517-83822011000400039

KETNAWA S, Chaiwut P, Rawdkuen S. 2012. Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90:385.391. ISSN: 0960-3085. https://doi.org/10.1016/j.fbp.2011.12.006

LAND M, Vanderperren E, Raes K. 2017. The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology. 234:284-294. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2017.10.009

OLSEN RL, Toppe J. 2017. Fish silage hydrolysates: No only a feed nutrient, but also a useful feed additive. Trends in Food Science & Technology. 66:93-97. ISSN: 0924-2244. https://doi.org/10.1016/j.tifs.2017.06.003

OZYURT G, Boga M, UÇar Y, Boga EK, Polat A. 2017. Chemical, bioactive properties and in vitro digestibility of spray-dried fish silages: Comparison of two discard fish (Equulites klunzingeri and Carassius gibelio) silages. Aquaculture nutrition. 1-8. ISSN: 1365-2095. https://onlinelibrary.wiley.com/doi/abs/10.1111/anu.12636

RAMÍREZ-RAMÍREZ JC, Huerta S, Arias L, Prado A, Shirai K. 2008. Utilization of shrimp by-catch and fish wastes by lactic acid fermentation and evaluation of degree of protein hydrolysis and in vitro digestibility. Revista Mexicana de Ingeniería Química. 7(3):195-204. ISSN 1665-2738. http://www.scielo.org.mx/pdf/rmiq/v7n3/v7n3a3.pdf

RAMÍREZ-RAMÍREZ JC, Ibarra JI, Gutiérrez R, Ulloa JA, Rosas P. 2016. Use of biological fish silage in broilers feed: Effect on growth performance and meat quality. Journal of Animal and Plant Sciences. 27(3):4293-4304. ISSN: 2071-7024. https://m.elewa.org/Journals/wp-content/uploads/2016/02/4.Ramirez.pdf

RAMÍREZ-RAMÍREZ JC, Gutiérrez R, Ulloa JA, Rosas P, Torres G, Bautista PU. 2018. Utilization of fish and mango wastes on biological silage production. Current Research in Agricultural Sciences. 5(1):6-14. ISSN: 2312-6418. http://www.conscientiabeam.com/pdf-files/agr/68/CRAS-2018-5(1)-6-14.pdf

RENUKA V. Zynudheen AA, Panda SK, Ravishankar CNR. 2016. Nutritional evaluation of processing discard from tiger tooth croaker, Otholites ruber. Food Science and Biotechnology. 25(5):1251-1257. ISSN: 2092-6456. https://doi.org/10.1007/s10068-016-0198-0

SMICHI N, Kharrat N, Achouri N, Gargouri Y, Miled N, Fendri A. 2016. Physicochemical characterization and nutritional quality of fish by-products: in vitro oils digestibility and synthesis of flavour esters. Journal of Food Processing & Technology. 7(7)602. ISSN: 2157-7110. https://www.longdom.org/archive/jfpt-volume-7-issue-7-year-2016.html

STATISTICA software, version 7.1. https://softadvice.informer.com/Statistica_7.1_Free_Download.html

TILLEY MA, Terry RA. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18(2):104–111. ISSN: 1365-2494. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

VAN SOEST, PJ, Robertson JB, Lewis, BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583-3597. ISSN: 0022-0302. https://www.journalofdairyscience.org/article/S0022-0302(91)78551-2/pdf

VIDOTTI RM, Bertoldo MT, GonÇalves GS. 2011. Characterization of the oils present in acid and fermented silage produced from Tilapia filleting residue. Revista Brazileira de Zootecnia. 40(2):240-244. ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982011000200002

Enlaces refback

  • No hay ningún enlace refback.