Metabolismo en rumiantes y su asociación con analitos bioquímicos sanguíneos
Resumen
Palabras clave
Referencias
AGARWAL U, Hu Q, Baldwin RL, Bequette BJ. 2015. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep. Journal of Dairy Science. 93(1):2382-2390. ISSN: 0022-0302. https://doi.org/10.2527/jas.2014-8738
AIBIBULA Y, Halidai R, Masaaki H, Meiji O. 2015. Rumen degradability and post-ruminal degestion of nitrogen and amino acids by cows grazing temperate pasture. Asian Agricultural Research. 7(5):72-78. ISSN: 1011-2367. http://dx.doi.org/10.22004/ag.econ.207047
ALVES EM, Magalhães DR, Freitas MA, Dos Santos EJ, Pereira MLA, Pedreira MS. 2014. Nitrogen metabolism and microbial synthesis in sheep fed diets containing slow release urea to replace the conventional urea. Acta Scientiarum: Animal Sciences. 36(1):55-62. ISSN: 1807-8672. https://doi.org/10.4025/actascianimsci.v36i1.21377
ARMATO LM, Gianesella M, Morgante M, Fiore E, Rizzo M, Giudice E, Piccione G. 2016. Rumen volatile fatty acids x dietary supplementation with live yeast and yeast cell wall in feedlot beef cattle. Acta Agriculturae Scandinavica: Animal Science. 66(2):119-124. ISSN: 0906-4702 http://dx.doi.org/10.1080/09064702.2016.1272628
ASHRAFI G, Ryan TA. 2017. Glucose metabolism in nerve terminals. Current Opinion in Neurobiology. 45(1):156-161. ISSN: 0959-4388.
http://dx.doi.org/10.1016/j.conb.2017.03.007
AYDIN S, Yıldırım E, Ince O, Ince B. 2017. Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass. Algal Research. 23(1):150-160. ISSN: 2211-9264. http://dx.doi.org/10.1016/j.algal.2016.12.016
BARUAH L, Malik PK, Kolte AP, Goyal P, Dhali A, Bhatta R. 2019. Rumen methane amelioration in sheep using two selected tanniferous phyto-leaves. Carbon Management. 10(3):299-308. ISSN: 1758-3004. https://doi.org/10.1080/17583004.2019.1605480
BATISTA ED, Detmann E, Titgemeyer EC, Valadares-Filho SC, Valadares RFD, Prates LL, Rennó LN, Paulino MF. 2016. Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage. Journal Animal Science. 94(1):201-216. ISSN: 1525-3163. https://doi.org/10.2527/jas.2015-9493
BERGMAN RN, Piccinini F, Kabir M, Ader M. 2019. Novel aspects of the role of the liver in carbohydrate metabolism. Metabolism Clinical and Experimental. 99(1):119-125. ISSN: 0026-0495. https://doi.org/10.1016/j.metabol.2019.05.011
BOMMER GT, Schaftingen EV, Veiga-da-Cunha M. 2020. Metabolite repair enzymes control metabolic damage in glycolysis. Trends in Biochemical Sciences. 45(3):16-32. ISSN: 0968-0004. https://doi.org/10.1016/j.tibs.2019.07.004
CAMPOS GR, Correa-Orozco A, Zambrano BGL, Ospina CA. 2018. Alteraciones bioquímicas y metabólicas en el período de transición en vacas lecheras. Revista de Investigación Agraria y Ambiental. 9(2):166-179. ISSN: 2145-6097. https://doi.org/10.22490/21456453.2123
CANTALAPIEDRA-HIJAR G, Ortigues-Marty I, Sepchat B, Agabriel J, Huneau JF, Fouillet H. 2015. Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants. British Journal of Nutrition. 113(1):1158-1169. ISSN: 0007-1145. https://doi.org/10.1017/S0007114514004449
CAO YC, Yang XJ, Guo L, Zheng C, Wang DD, Cai CJ, Yao JH. 2018. Regulation of pancreas development and enzymatic gene expression by duodenal infusion of leucine and phenylalanine in dairy goats. Livestock Science. 216(1):9-15. ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2018.03.010
CARVALHO IPC, Doelman J, Martín-Tereso J. 2019. Post-ruminal non-protein nitrogen supplementation as a strategy to improve fibre digestion and N efficiency in the ruminant. Journa of Animal Physiology Animal Nutrition. 104(1):64-75. ISSN: 1439-0396. https://doi.org/10.1111/jpn.13233
CIVEIRA F, Baila-Rueda L, Castro-Orós I, Mateo-Gallego R, Cenarro A. 2013. Novedades en el metabolismo lipídico. Revista Nefroligía. 4(4):9-17. ISSN: 0211-6995. http://dx.doi.org/10.3265/NefrologíaSuplementoExtraordinario.pre2013.Nov.12338
CHEN L, Tuo B, Dong H. 2016. Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients. 8(43):2-13. ISSN: 2072-6643. https://doi.org/10.3390/nu8010043
CHISHTI GA, Salfer IJ, Suarez-Mena FX, Harvatine KJ, Heinrichs AJ. 2020. Short communication: Relationships between physical form of oats in starter, rumen pH, and volatile fatty acids on hepatic expression of genes involved in metabolism and inflammation in dairy calves. Journal of Dairy Science. 103(1):10-18. ISSN: 0022-0302. https://doi.org/10.3168/jds.2019-16296
DASHTY M. 2013. A quick look at biochemistry: Carbohydrate metabolism. Clinical Biochemistry. 46(1):1339-1352. ISSN: 0009-9120. http://dx.doi.org/10.1016/j.clinbiochem.2013.04.027
DAWSON PA, Karpen SJ. 2015. Intestinal transport and metabolism of bile acids. Journal of Lipid Research. 56(1):1085-1099. ISSN: 0022-2275. https://doi.org/10.1194/jlr.R054114
DePETERS EJ, George LW. 2014. Rumen transfaunation. Immunology Letters. 162(1):69-76. ISSN: 0165-2478. http://dx.doi.org/10.1016/j.imlet.2014.05.009
DONG J, Jeong HJ, Ueda H. 2016. Preparation of quenchbodies by protein transamination reaction. Journal of Bioscience and Bioengineering. 122(1):125-130. ISSN: 1389-1723. http://dx.doi.org/10.1016/j.jbiosc.2015.12.010
DONNELLY RP, Finlay DK. 2015. Glucose, glycolysis and lymphocyte responses. Molecular Immunology. 68(1):513-519. ISSN: 0161-5890. http://dx.doi.org/10.1016/j.molimm.2015.07.034
DU X, She T, Wang H, Qin X, Xing D, Ye Q, Shi Z, Fang Z, Zhu Y, Yang Y, Peng Z, Zhao C, Lv B, Li X, Liu G, Li X. 2018. Adaptations of hepatic lipid metabolism and mitocondria in dairy cows with mild fatty liver. Journal Dairy Science. 101(10):9544-9558. ISSN: 0022-0302. https://doi.org/10.3168/jds.2018-14546
EDINBURGH RM, Betts JA, Burns SF, González TJ. 2017. Concordant and divergent strategies to improve postprandial glucose and lipid metabolism. Nutrition Bulletin. 42(1):113-122. ISSN: 1467-3010. https://doi.org/10.1111/nbu.12259
EMERY PW. 2012. Basic metabolism: protein. Surgery. 30(5):209-213. ISSN: 0039-6060. https://doi.org/10.1016/j.mpsur.2012.02.008
EMERY PW. 2015. Basic metabolism: protein. Surgery. 33(4):143-147. ISSN: 0039-6060. https://doi.org/10.1016/j.mpsur.2015.01.008
FONG LG, Young SG, Beigneux AP, Bensadoun A, Oberer M, Jiang H, Ploug M. 2016. GPIHBP1 and plasma triglyceride metabolism. Trends in Endocrinology & Metabolism. 27(7):445-469. ISSN: 1043-2760. http://dx.doi.org/10.1016/j.tem.2016.04.013
FRANCISCO AE, Santos-Silva JM, Portugal APV, Alves SP, Bessa RJB. 2019. Relationship between rumen ciliate protozoa and biohydrogenation fatty acid profile in rumen and meat of lambs. PLoS ONE. 14(9):221-243. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0221996
FREITAS Jr JE, Bettero VP, Zanferari F, Del Valle TA, De Paiva PG, De Jesus EF, Takiya CS, Leite LC, Dias M, Rennó FP. 2019. Ruminal fatty acid outflow in dry cows fed different sources of linoleic acid: reticulum and omasum as alternative sampling sites to abomasum. Archives of Animal Nutrition. 70(3):171-193. ISSN: 1745-039X. https://doi.org/10.1080/1745039X.2019.1595886
FUKAO T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y. 2014. Ketone body metabolism and its defects. Journal of Inherited Metabolic Disease. 37(1):541-551. ISSN: 0141-8955. http://dx.doi.org/10.1007/s10545-014-9704-9
GARCÍA CAC, Montiel RLA, Borderas TF, Girard V. 2015. Relationship between β-hydroxybutyrate and the fat: protein ratio of milk during early lactation in dairy cows. Archivos de Medicina Veterinaria. 47(1):21-25. ISSN: 0301-732X. http://dx.doi.org/10.4067/S0301-732X2015000100005
GARCÍA CAC, Montiel RLA, Borderas TF. 2014. Grasa y proteína de la leche de vaca: componentes, síntesis y modificación. Archivos de Zootecnia. 63(1):85-105. ISSN: 1885-4494. https://doi.org/10.21071/az.v63i241.592
GARZÓN AAM, Espinosa OJ. 2018. Epidemiología de la cetosis en bovinos: una revisión. Revista CES Medicina Veterinaria y Zootecnia. 13(1):42-61. ISSN: 1900-9607. http://dx.doi.org/10.21615/cesmvz.13.1.4
GEBREEGZIABHER Z. 2016. Factors affecting feed intake and its regulation mechanisms in ruminants. A Review. International Journal of Livestock Research. 6(4):19-40. ISSN: 2277-1964. https://doi.org/10.5455/ijlr.20160328085909
GINANE C, Bonnet M, Baumont R, Revell DK. 2015. Feeding behaviour in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. Animal Production Science. 55(1):247-260. ISSN: 1836-0939. http://dx.doi.org/10.1071/AN14481
GOLSHAN S, Pirmohammadi R, Khalilvandi-Behroozyar H. 2019. Microwave irradiation of whole soybeans in ruminant nutrition: Protein and carbohydrate metabolism in vitro and in situ. Veterinary Research Forum. 10(4):343-350. ISSN: 2008-8140. https://dx.doi.org/10.30466%2Fvrf.2019.35896
GÓRKA P, Śliwiński B, Flaga J, Wieczorek J, Godlewski MM, Wierzchoś E, Zabielski R, Kowalski ZM. 2017. Effect of butyrate infusion into the rumen on butyrate flow to the duodenum, selected gene expression in the duodenum epithelium, and nutrient digestion in sheep. Journal Animal Science. 95(1):2144-2155. ISSN: 1525-3163. https://doi.org/10.2527/jas.2016.1218
GOYAL R, Longo LD. 2015. Metabolic profiles in ovine carotid arteries with developmental maturation and long-term hypoxia. PLoS ONE. 10(6):33-66. ISSN: 1932-6203. https://dx.doi.org/10.1371%2Fjournal.pone.0130739
HARMON DL, Swanson CK. 2020. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal. 14(1):17-28. ISSN: 2076-2615. https://doi.org/10.1017/S1751731119003136
HARMON DL. 2009. Understanding starch utilization in the small intestine of cattle. Asian-Australasian Journal of Animal Sciences. 22(7):915-922. ISSN: 1011-2367. https://doi.org/10.5713/ajas.2009.r.08
HOOIJBERG EH, Steenkamp G, Buss P, Goddard A. 2017. Method comparison and generation of plasma biochemistry RIs for the White rhinoceros on a point-of-care and wet chemistry analyzer. Veterinary Clinical Pathology. 46(2):287-298. ISSN: 0275-6382. https://doi.org/10.1111/vcp.12490
HOUTEN SM, Wanders RJA. 2010. A general introduction to the biochemistry of mitocondrial fatty acid β-oxidation. Journal of Inherited Metabolic Disease. 33(1):469-477. ISSN: 0141-8955. http://dx.doi.org/10.1007/s10545-010-9061-2
HRISTOV AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science. 102(1):5811-5852. ISSN: 0022-0302. https://doi.org/10.3168/jds.2018-15829
HUSSAIN SA, Uppal SK, Randhawa C, Sood NK, Mahajan SK. 2013. Clinical characteristics, hematology, and biochemical analytes of primary omasa impaction in bovines. Turkish Journal of Veterinary and Animal Sciences. 37(1):329-336. ISSN: 1300-0128. https://doi.org/10.3906/vet-1205-31
JIANG FG, Lin XY, Yan ZG, Hu ZY, Liu GM, Sun YD, Liu XW, Wang ZH. 2017. Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. Journal of Dairy Science. 100(4):1-12. ISSN: 0022-0302. https://doi.org/10.3168/jds.2016-11559
JIN D, Zhao SG, Zheng N, Bu DP, Beckers Y, Wang JQ. 2018. Urea nitrogen induces changes in rumen microbial and host metabolic profiles in dairy cows. Livestock Science. 210(1):104-110. ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2018.02.011
JINDAL G, Warshel A. 2017. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis. Proteins: Structure, Function, and Bioinformatics. 85(12):2-19. ISSN: 1097-0134. https://doi.org/10.1002/prot.25381
KHEZRI A, Dayani O, Tahmasbi R. 2016. Effect of increasing levels of wasted date palm on digestion, rumen fermentation and microbial protein synthesis in sheep. Journal of Animal Physiology and Animal Nutrition. 101(1):53-60. ISSN: 0931-2439. https://doi.org/10.1111/jpn.12504
KITTELMANN S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE. 2(1):1112-1126. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0047879
KOHAN AB, Wang F, Lo CM, Liu M, Tso P. 2015. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Journal of Physiology-Gastrointestinal and Liver Physiolpgy. 308(1):472-481. ISSN: 0193-1857. https://doi.org/10.1152/ajpgi.00098.2014
KONG F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y. 2017. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. The Plant Journal. 90(1):358-371. ISSN: 0960-7412. http://dx.doi.org/10.1111/tpj.13498
KOZŁOWSKA M, Cieślak A, Jóźwik A, El-Sherbiny M, Stochmal A, Oleszek W, Kowalczyk M, Filipiak F, Szumacher-Strabel M. 2019. The effect of total and individual alfalfa saponins on rumen methane produc. Journal of the Science Food and Agriculture. 100(1):1922-1930. ISSN: 0022-5142. https://doi.org/10.1002/jsfa.10204
KRAUSE DO, Nagaraja TG, Wright ADG, Callaway TR. 2013. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. Journal Animal Science. 91(1):331-339. ISSN: 1525-3163. https://doi.org/10.2527/jas.2012-5567
KREHBIEL CR. 2014. Invited review: Applied nutrition of ruminants: Fermentation and digestive physiology. The Professional Animal Scientist. 30(1):129-139. ISSN: 1080-7446. https://doi.org/10.15232/S1080-7446(15)30100-5
LI MM, Sengupta S, Hanigan MD. 2019a. Using artificial neural networks to predict pH, ammonia, and volatile fatty acid concentrations in the rumen. Journal of Dairy Science. 102(1):20-32. ISSN: 0022-0302. https://doi.org/10.3168/jds.2018-15964
LI MM, Titgemeyer EC, Hanigan, MD. 2019b. A revised representation of urea and ammonia nitrogen recycling and use in the Molly cow model. Journal of Dairy Science. 102(6):67-88. ISSN: 0022-0302. https://doi.org/10.3168/jds.2018-15947
LONCKE C, Nozière P, Bahloul L, Vernet J, Lapierre H, Sauvant D, Ortigues-Marty I. 2015. Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: a meta-analysis. Animal. 9(3):449-463. ISSN: 2076-2615. https://doi.org/10.1017/S1751731114002638
MARTINES A-CMF, van Eunen K, Reijngoud D-J, Bakker BM. 2017. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation. PLoS Computational Biology. 13(4):100-123. ISSN: 1553-734X. https://doi.org/10.1371/journal.pcbi.1005461
McFADDEN JW. 2020. Review: Lipid biology in the periparturient dairy cow: contemporary perspectives. Animal 14(S1): s165-s175. ISSN: 0968-0004. ISSN: 2076-2615. https://doi.org/10.1017/S1751731119003185
MENGER MF, Nome F. 2019. Interaction vs preorganization in enzyme catalysis. A dispute that calls for resolution. ACS Chemical Biology. 14(1):1386-1392. ISSN: 1554-8929. https://doi.org/10.1021/acschembio.8b01029
MIKOŁAJCZYK K, Pecka-Kiełb E, Zachwieja A. 2019. Impact of the volume and the profile of volatile fatty acids in the rumen fermentation on cow productivity and milk composition. Mljekarstvo. 69(4):222-228. ISSN: 0026-704X. https://doi.org/10.15567/mljekarstvo.2019.0402
MORITA M, Matsumoto S, Okazaki A, Tomita K, Watanabe S, Kawaguchi K, Minato D, Matsuya Y, Shimozawa N, Imanaka T. 2016. A novel method for determining peroxisomal fatty acid β-oxidation. Journal of Inherited Metabolic Disease. 39(1):725-731. ISSN: 0141-8955. http://dx.doi.org/10.1007/s10545-016-9952-y
MOYANO JC, López JC, Galván DC, Marini PR, Fischman ML. 2018. Daily variations in protein and energy metabolism during the day in hair sheep in the ecuadorian Amazon Region. Journal of Vetetinaty Science & Technology. 9(2):19-23. ISSN: 2157-7579. https://doi.org/10.4172/2157-7579.1000530
NORRIS GH, Jiang C, Ryan J, Porter CM, Blesso CN. 2016. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of Nutritional Biochemistry. 30(1):93-101. ISSN: 0955-2863. https://doi.org/10.1016/j.jnutbio.2015.12.003
NUNES-NESI A, Araujo WL, Obata T, Fernie AR. 2013. Regulation of the mitocondrial tricarboxylic acid cycle. Current Opinion in Plant Biology. 16(1):335-343. ISSN: 1369-5266. http://dx.doi.org/10.1016/j.pbi.2013.01.004
OSORIO JH, Barrera LM, Pérez JE. 2015. Comparación del perfil lipídico por sexo y edad en ovinos. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 62(1):11-19. ISSN: 0120-2952. https://doi.org/10.15446/rfmvz.v62n1.49381
PANOV A, Orynbayeva Z, Vavilin V, Lyakhovich V. 2014. Fatty acids in energy metabolism of the central nervous system. BioMed Research International. 20(1):30-42. ISSN: 2414-6133. http://dx.doi.org/10.1155/2014/472459
PARK CJ, Armenia SJ, Shaughnessy MP, Greig CJ, Cowles RA. 2019. Potentiation of serotonin signaling leads to increased carbohydrate and lipid absorption in the murine small intestine. Journal of Pediatric Surgery. 54(1):1245-1249. ISSN: 0022-3468. https://doi.org/10.1016/j.jpedsurg.2019.02.027
POHER AL, Tschöp MH, Müller TD. 2018. Ghrelin regulation of glucose metabolism. Peptides. 100(1):236-242. ISSN: 0196-9781. https://doi.org/10.1016/j.peptides.2017.12.015
POURAZAD P, Khiaosa-ard R, Qumar M, Wetzels SU, Klevenhusen F, Metzler-Zebeli BU, Zebeli Q. 2016. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Journal of Dairy Science. 94(1):726-738. ISSN: 0022-0302. https://doi.org/10.2527/jas.2015-9605
PRIETO ME, Mahecha LL, Angulo AJ, Vargas SJE. 2016. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agronomía Mesoamericana. 27(2):421-437. ISSN: 2215-3608. https://doi.org/10.15517/am.v27i2.22022
PUPPEL K, Kuczyńska B. 2016. Metabolic profiles of cow’s blood; a review. Journal of the Science Food and Agriculture. 96(1):4321-4328. ISSN: 0022-5142. https://doi.org/10.1002/jsfa.7779
QAID MM, Abdelrahman MM. 2016. Role of insulin and other related hormones in energy metabolism-A review. Cogent Food and Agriculture. 2(1):126-142. ISSN: 2331-1932. http://dx.doi.org/10.1080/23311932.2016.1267691
QIYU D, Rong Z and Tong F. 2019. Review of strategies to promote rumen development in calves. Animals. 9(8):2-15. ISSN: 2076-2615. https://doi.org/10.3390/ani9080490
QUMAR M, Khiaosa-ard R, Pourazad P, Wetzels SU, Klevenhusen F, Kandler W, Aschenbach JR, Zebeli Q. 2016. Evidence of in vivo absorption of lactate and modulation of short chain fatty acid absorption from the reticulo-rumen of non lactating cattle fed high concentrate diets. PloS ONE. 11(10):1-15. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0164192
RAMSAY JD, Evanoff R, Mealey RH, Simpson EL. 2019. The prevalence of elevated γ-glutamyltransferase and sorbitol dehydrogenase activity in racing Thorough breds and their associations with viral infection. Equine Veterinary Journal. 51(1):738-742. ISSN: 0425-1644. https://doi.org/10.1111/evj.13092
RESENDE Jr JC, Daniel JLP, Barreto-Vianna ARC, Peixoto JV, Guimarães GC, Costa SF, Lima RF, Meirelles FC. 2019. Determination of volatile fatty acids clearance in in-tact ruminal digesta. Revista CES Medicina Veterinaria y Zootecnia. 14(1):8-17. ISSN: 1900-9607. http://dx.doi.org/10.21615/cesmvz.14.1.1
ROSTOM H, Shine B. 2018. Basic metabolism: proteins. Journal of Basic Science. 30(6):234-240. ISSN: 2448-4997. https://doi.org/10.1016/j.mpsur.2018.01.009
ROTTA PP, Valadares-Filho SC, Detmann E, Costa-Silva LF, Paulino MF, Marcondes MI, Lobo AAG, Villadiego FAC. 2014. Digesta sampling sites and marker methods for estimation of ruminal outflow in bulls fed different proportions of corn silage or sugarcane. Journal of Dairy Science. 92(1):2996-3006. ISSN: 0022-0302. https://doi.org/10.2527/jas.2013-7364
SCHUBA J, Südekum KH, Pfeffer E, Jayanegara A. 2017. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livestock Science. 198(1):82-88. ISSN: 1871-1413. http://dx.doi.org/10.1016/j.livsci.2017.01.017
SHI F, Wang H, Degen AA, Zhou J, Guo N, Mudassar S, Long R. 2019. Rumen parameters of yaks (Bos grunniens) and indigenous cattle (Bos taurus) grazing on the Qinghai-Tibetan Plateau. Journal of Animal Physiology Animal Nutrition. 103(1):969-976. ISSN: 1439-0396. https://doi.org/10.1111/jpn.13095
SHI HB, Du Y, Zhang CH, Sun C, He YL, Wu YH, Liu JX, Luo J, Loor JJ. 2018. Fatty acid elongase 5 (ELOVL5) alters the synthesis of long-chain unsaturated fatty acids in goat mammary epithelial cells. Journal Dairy Science. 101(5):4586-4594. ISSN: 0022-0302. https://doi.org/10.3168/jds.2017-14061
SILVA M, Rosani VM, Pinto de Carvalho GG, Vieira PAJ, Alburquerque PML, Pereira L. Campos SF, Fernandes PA, Santana BL, Jeruzia VM, Almeida RLM. 2016. Nitrogen balance, microbial protein synthesis and ingestive behavior of lambs fed diets containing cottonseed cake in substitution of soybean meal semina. Ciências Agrárias. 37(4):2155-2166. ISSN: 2183-041X http://dx.doi.org/10.5433/1679-0359.2016v37n4p2155
SILVA VO, Lopes E, Andrade EF, Sousa RV, Zangeronimo MG, Pereira LJ. 2014. Use of biodiesel co-products (Glycerol) as alternative sources o energy in animal nutrition: a systematic review. Archivos de Medicina Veterinaria. 46(1):111-120. ISSN: 0301-732X. http://dx.doi.org/10.4067/S0301-732X2014000100015
SONG S, Wu J, Zhao S, Casper DP, Zhang L, He B, Lang X, Wang C, Gong X, Wang F, Liu L. 2018. The effect of periodic energy restriction on growth performance, serum biochemical indices, and meat quality in sheep. Journal Animal Science. 96(1):4251-4263. ISSN: 1525-3163. http://dx.doi.org/10.1093/jas/sky299
TEKLEBRHAN T, Wang R, Wang M, Wen MW, Tan LW, Zhang XM, Ma ZY, Tan ZL. 2020. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Animal Feed Science and Technology. 259(1):114-122. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2019.114314
TORAL PG, Hervás G, Carreño D, Leskinen H, Belenguer A, Shingfield JK, Frutos F. 2017. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. Journal of Dairy Science. 100(8):6187-6198. ISSN: 0022-0302. https://doi.org/10.3168/jds.2017-12638
TORAL PG, Monahan FJ, Hervá G, Frutos P, Moloney AP. 2018. Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal. 12(3):449-463. ISSN: 2076-2615. https://doi.org/10.1017/S1751731118001994
TRAN LV, Malla AM, Kumar S, Tyagi TKA. 2017. Polyunsaturated fatty acids in male ruminant reproduction-A Review. Asian-Australasian Journal of Animal Sciences. 30(5):622-637. ISSN: 1011-2367. https://doi.org/10.5713/ajas.15.1034
VALDEBENITO R, Ruminot I, Garrido-Gerter P, Fernández-Moncada I, Forero-Quintero L, Alegría K, Becker HM, Deitmer JW, Barros LF. 2016. Targeting of astrocytic glucose metabolism by β-hydroxybutyrate. Journal of Cerebral Blood Flow & Metabolism. 36(10):1813-1822. ISSN: 0271-678X. https://doi.org/10.1177/0271678X15613955
VALENTE TNP, Lima ES, dos Santos WBR, Cesário AS, Tavares CJ, Fernandes IL, de Freitas MAM. 2016. Ruminal microorganism consideration and protein used in the metabolism of the ruminants: A review. African Journal of Microbiology Research. 10(14):456-562. ISSN: 1996-0808. https://doi.org/10.5897/AJMR2016.7627
Van CLEEF EHCB, Almeida MT, Leal PH, Paschoaloto JR, Filho ESC, Ezequiel JMB. 2018. Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Ruminant Research. 159(1):45-51. ISSN: 0921-4488. https://doi.org/10.1016/j.smallrumres.2017.12.011
VARGAS JAC. 2019. Función y metabolismo de ácidos grasos en el tejido adiposo y hepático de rumiantes en producción: una revisión. Revista CES Medicina Veterinaria y Zootecnia. 14(2):30-44. ISSN: 1900-9607. http://dx.doi.org/10.21615/cesmvz.14.2.3
WALTHER TC, Farese Jr. RV. 2012. Lipid droplets and cellular lipid metabolism. Annual Review of Biochemistry. 81(1):687-714. ISSN: 0066-4154. https://doi.org/10.1146/annurev-biochem-061009-102430
WALLACE RJ, Snelling TJ, McCartney CA, Tapio I, Strozzi F. 2017. Application of meta‑omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genetics Selection Evolution. 49(9):3-14. ISSN: 0999-193X. https://doi.org/10.1186/s12711-017-0285-6
WANG M, Wang R, Janssen PH, Zhang XM, Sun XZ, Pacheco D, Tan ZL. 2016. Sampling procedure for the measurement of disolved hydrogen and volatile fatty acids in the rumen of dairy cows. Journal Animal Science. 94(1):1159-1169. ISSN: 1525-3163. https://doi.org/10.2527/jas.2015-9658
WATTS JL, Ristow M. 2017. Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics. 207(1):413-446. ISSN: 1943-2631. https://doi.org/10.1534/genetics.117.300106
WITUS LS, Netirojjanakul C, Palla KS, Muehl EM, Weng CH, Iavarone AT, Francis MB. 2013. Site-Specific protein transamination using N-Methylpyridinium-4-carboxaldehyde. Journal of the American Chemical Society. 135(1):17223−17229. ISSN: 0002-7863. https://doi.org/10.1021/ja408868a
YAZDI MH, Mirzaei-Alamouti HR, Amanlou H, Mahjoubi E, Nabipour A, Aghaziarati N, Baumgard LH. 2016. Effects of heat stress on metabolism, digestibility, and rumen epithelial characteristics in growing Holstein calves. Journal of Dairy Science. 94(1):77-89. ISSN: 0022-0302. https://doi.org/10.2527/jas.2015-9364
YOHE TT, Schramm S, WhiteRR, Hanigan MD, Parsons CLM, Tucker HLM, Enger BD, Hardy NR, Daniels KM. 2019. Form of calf diet and the rumen. II: Impact on volatile fatty acid absorption. Journal of Dairy Science. 102(9):8502-8512. ISSN: 0022-0302. https://doi.org/10.3168/jds.2019-16450
ZENG Y, Zeng D, Ni X, Zhu H, Jian P, Zhou Y, Xu S, Lin Y, Li Y, Yin Z, Pan K, Jing B. 2017. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using illumina MiSeq sequencing revealed high microbial diversity. AMB Express. 7(75):2-10. ISSN: 2191-0855. https://doi.org/10.1186/s13568-017-0378-1
ZHOU H, Meng L, Yin X, Liu Y, Xu G, Wu J, Wu M, Yang L. 2019. Artificial biocatalytic cascade with three enzymes in one pot for asymmetric synthesis of chiral unnatural amino acids. European Journal Organic Chemistry. 38(1):6470-6477. ISSN: 1099-0690. https://doi.org/10.1002/ejoc.201900828
Enlaces refback
- No hay ningún enlace refback.