Sustitución de heno de alfalfa por hojas de ajo y su efecto en la fermentación ruminal in vitro

Karla Torres-Fraga, Jesús Páez-Lerma, Gerardo Pámanes-Carrasco, Esperanza Herrera-Torres, Francisco Carrete-Carreón, Manuel Murillo-Ortiz


Esta investigación tuvo como objetivo evaluar la sustitución de heno de alfalfa por hojas de ajo en la producción de gas in vitro y metano, así como en los patrones de fermentación ruminal. Se evaluaron cuatro tratamientos: (T1) heno de alfalfa (50%); (T2) heno de alfalfa (33%) + hojas de ajo crudo (17%); (T3) heno de alfalfa (17%) + hojas de ajo crudo (33%) y (T4) hojas de ajo crudo (50%). Los valores más altos de "a" (producción de gas a partir de la fracción soluble); "b" (producción de gas a partir de la fracción insoluble) y "c" (tasa de producción de gas) se encontraron en T4 (mL); mientras que fueron menores en T1 (P <0.05); pero no se observaron diferencias entre T2 y T3 (P> 0.05). La concentración más alta de nitrógeno amoniacal (N-NH3) se registró en T4 y la más baja en T1 (P <0.05). Las concentraciones de propionato aumentaron con T4 y disminuyeron con T1, mientras que las de acetato disminuyeron con T4 y aumentaron con T1 (P <0.05). La producción de metano más alta se registró en T1 y la más baja en T4 (P <0.05). Se concluye, que la sustitución de heno de alfalfa por hojas de ajo en dietas de bovinos carne, mejoró la fermentación ruminal y disminuyó la producción de metano en condiciones in vitro.

Palabras clave

hojas de ajo; producción de gas; fermentación ruminal; metano.


AMMAR H, López S, González JS. 2005. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Animal Feed Science and Technology. 119: 323-331.

ANASSORI E, Dalir–Naghadeh B, Pirmohammadi R, Taghizadeh A, Asri-Rezaei S, Farahmand-Azar S, Besharati M, Tahmoozi M. 2012. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Veterinary Research Forum. 3: 5–11.

AOAC. 2000. Official Methods of Analysis, Association of AOAC International. 17th Ed. Association of Official Analytical Chemists, Arlington, USA. Disponible:

CARDOZO P W, Calsamiglia S, Ferret A, Kamel C. 2004. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science. 82:(11) 3230-3236.

FIEVEZ V, Babayemi OJ, Demeyer D. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology. 123-124: 197-210.

GALLEGOS FP, Bañuelos VR, Delgadillo RL, Echavarría CF, Meza LC, Rodríguez TD. 2019. Differential evaluation of oregano extracts in the production of volatile fatty acids and methane during ruminal fermentation in vitro. Abanico Veterinario. 9(1):1-18.

HAN X, Cheng Z, Meng H, Yang X, Ahmad I. 2013. Allelopathic effect of decomposed garlic (Allium sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.). Pakistan Journal of Botany. 45:225-233.

HAQUE MN. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from Ruminants. Journal Animal Science and Technology. 60: 15.

KALLEL F, Ellouz CS. 2017. Perspective of garlic processing wastes as low-cost substrates for production of high-added value products: a review. Environmental Progress and Sustainable Energy. 36: 1765-1777.

KAMRA DN, Agarwal N, Sakthivel PC, Chaudhary LC. 2012. Garlic as a rumen modifier for eco-friendly and economic livestock production. Journal of Applied Animal Research. 40: 90 96.

KARA K. 2015. In vitro methane production and quality of corn silage treated with maleic acid. Italian Journal of Animal Science. 14: 718-722.

KLEVENHUSEN F, Zeitz JO, Duval S, Kreuzer M, Soliva CR. 2011. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Animal Feed Science and Technology. 166–167: 356–363.

KONGMUN P, Wanapat M, Pakdee P, Navanukraw C. 2010. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livestock Science. 127: 38-44.

LA O, García R, Ruiz O, Castillo Y, Muro A, Rodríguez C, Arzola C, González H, Ortiz B. 2008. Potencial fermentativo ruminal in vitro de dos árboles (Pithecellobium dulce y Tamarindos indica) de importancia para la ganadería en ecosistemas frágiles, salinos y de alta sequía, situados en el Oriente de Cuba. Revista Cubana de Ciencia Agrícola. 42: 57-61.

LAN W, Yang C. 2019. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of the Total Environment. 654: 1270-1283.

LEE YH, Kim YI, Oh YK, Ahmadi F, Kwak WS. 2017.Yield survey and nutritional evaluation of garlic stalk for ruminant feed. Journal of Animal Science and Technology. 59: 22.

MIRZAEI-AGHSAGHALI A, Maheri-Sis N. 2011. Factors affecting mitigation of methane emission from ruminants I: Feeding strategies. Asian Journal of Animal and Veterinary Advances. 6:888-908.

MOSS AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Annals of Zootechnie. 49: 231-253.

ØRSKOV ER, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science. 92: 499-503.

PANTHEE A, Matsuno A, Al-Mamun M, Sano H. 2017. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. Journal of Animal Science and Technology. 59: 14.

PINARES-PATIÑO CS, Ulyatt MJ, Waghorn GC, Lassey KR, Barry TN, Holmes CW, Johnson DE. 2003. Methane emissions by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. Journal of Agricultural Science. 140: 215-226.

SAHLI F, Darej C, Moujahed N. 2018. Potential of white garlic powder (Allium sativum L.) to modify in vitro ruminal fermentation. South African Journal of Animal Science. 48: 253-260.

SAS. System Analytics Static. 2002. User’s Guide: Statistics Ver 9.0. SAS Inst. Inc., Cary, NC, USA.

TAG EL-Dini AE, Mohara MS, Nour AA, Nasser ME. 2012. Effect of some herbs on the rumen fermentation: 1- Effect of ginger (zingiber officinale) and garlic (allium sativum) on gas production, energy values, organic matter digestibility and methane emission, in vitro. Journal Agriculture and Enviromental Science, Damanhoure University Egypt. 11: 33-52.

TAPIO I, Snelling TJ, Strozzi F, Wallace RJ. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology. 8: 7.

VAN Soest PJ. 1994. Nutritional Ecology of the Ruminant. Ithaca, Cornell University Press, USA.,+Cornell+University+Press,+USA.&ots=lnCgEloYfy&sig=KEkNXOzwc9BFqFueYB25lK5Hvk8#v=onepage&q&f=false

WANAPAT M, Pimpa O. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Sciences. 12: 904–907.

YANG WZ, Benchaar C, Ametaj BN, Chaves AV, He ML, McAllister TA. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. Journal of Dairy Science. 90: 5671–5681.

ZAFARIAN R, Manafi M. 2013. Effect of Garlic Powder on Methane Production, Rumen Fermentation and Milk Production of Buffaloes. Annual Review and Research in Biology. 3:1013-1019.

ZHONG RZ, Xiang H, Cheng L, Zhao C, Wang F, Zhao X, Fang Y. 2019. Effects of feeding garlic powder on growth performance, rumen fermentation, and the health status of lambs infected by gastrointestinal nematodes. Animals. 9: 2-10.

Enlaces refback

  • No hay ningún enlace refback.