Efecto antibacteriano del extracto metanólico de Salix babylonica sobre bacterias de importancia en salud pública

Eddy González-Alamilla, Marco Rivas-Jacobo, Carolina Sosa-Gutiérrez, Lucía Delgadillo-Ruiz, Benjamín Valladares-Carranza, Carla Rosenfeld-Miranda, Adrián Zaragoza-Bastida, Nallely Rivero-Pérez

Resumen

El uso excesivo de antimicrobianos ha generado resistencia de los microorganismos a estos, se han buscado alternativas que sean eficaces para el tratamiento de enfermedades producidas por microorganismos resistentes o multirresistentes a antibióticos, dentro de estas alternativas están las plantas, las cuales por su contenido de compuesto secundarios presentan actividad antibacteriana. El objetivo del presente estudio fue caracterizar y determinar la actividad antibacteriana del extracto metanólico de Salix babylonica (SB) sobre bacterias de importancia en salud pública. Para la obtención del extracto se utilizó la técnica de maceración, se realizó una caracterización química cualitativa y cuantitativa por cromatografía de gases. Para determinar la actividad antibacteriana, se determinó la Concentración Mínima Inhibitoria (CMI) y la Concentración Mínima Bactericida (CMB) y la caracterización del extracto permitió identificar compuestos fenólicos, cumarinas, lactonas, flavonoles, quinonas, saponinas, triterpenos y compuestos esteroidales, además de Timol (0.5319 mg/mL) y Carvacrol (0.4158 mg/ml). Con respecto a la actividad antibacteriana la mejor actividad se presentó contra Bacillus. subtillis (CMI: 12.5 mg/mL y CMB: 25 mg/mL), Listeria. monocytogenes y Staphylococcus. aureus (CMI: 25 mg/mL y CMB: 50 mg/mL). Se concluye que el extracto metanólico de SB puede ser una alternativa para el tratamiento de enfermedades producidas por bacterias resistentes o multirresistentes a antibióticos.

Palabras clave

Salix babylonica, caracterización, efecto antibacteriano

Referencias

ALÓS JI. 2014. Resistencia bacteriana a los antibóticos: una crisis global. Enfermedades Infecciosas y Microbiologias Clinica. 33(10):692–699. http://dx.doi.org/10.1016/j.eimc.2014.10.004

BALOUIRI M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005.

BAÑUELOS-VALENZUELA R, Delgadillo L, Chairez F, Delgadillo O, Meza-López C. 2018. Composición química y FTIR de extractos etanólicos de Larrea tridentata, Origanum vulgare, Artemisa ludoviciana y Ruta graveolens Agrociencia. 52(3): 309-321. https://dialnet.unirioja.es/servlet/articulo?codigo=6423180.

BERRIDGE MV, Herst PM, Tan AS. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review. 11:127-152. https://doi.org/10.1016/s1387-2656(05)11004-7.

BORGES A, Ferreira C, Saavedra MJ, Simoes, M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance. 19(4): 256-265. https://doi.org/10.1089/mdr.2012.0244.

CLSI (Clinical and Laboratory Standards Institute). 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. Pp. 88. USA.

HERNÁNDEZ-ALVARADO J, Zaragoza-Bastida A, López-Rodríguez G, Peláez-Acero A, Olmedo-Juárez A, Rivero-Perez N. 2018. Actividad antibacteriana y sobre nematodos gastrointestinales de metabolitos secundarios vegetales: enfoque en Medicina Veterinaria. Abanico Veterinario. 8(1):14-27. http://dx.doi.org/10.21929/abavet2018.81.1.

KAEWPIBOON C, Lirdprapamongkol K, Srisomsap C, Winayanuwattikun P, Yongvanich T, Puwaprisirisan P, Svasti J, Assavalapsakul W. 2012. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complementary and Alternative Medicine. 12(1):217. https://doi.org/10.1186/1472-6882-12-217.

KAYE KS, Engemann JJ, Fraimow HS, Abrutyn E. 2004. Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms, and clinical management. Infectious disease clinics of North America. 18(3):467-511. https://doi.org/10.1016/j.idc.2004.04.003.

KHAN UA, Rahman H, Niaz Z, Qasim M, Khan J, Tayyaba, Rehman B. 2013. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria. European Journal of Microbiology and Immunology. 3(4): 272–274. https://doi.org/10.1556/EuJMI.3.2013.4.6

LOZANO R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al., 2012.Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. 2012. The Lancet. 380(9859):2095-2128. https://doi.org/10.1016/S0140-6736(12)61728-0

MAGI G, Marini E, Facinelli B. 2015. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Frontiers in Microbiology. 6:165. https://doi.org/10.3389/fmicb.2015.00165.

MOTHANA RA, Lindequist U, Gruenert R, Bednarski PJ. 2009. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complementary and Alternative Medicine. 9: 7. https://doi.org/10.1186/1472-6882-9-7.

NDHLALA AR, Ghebrehiwot HM, Ncube B, Aremu AOJ, Gruz M, Subrtova J, Van Staden A. 2015. Antimicrobial, anthelmintic activities and characterization of functional phenolic acids of Achyranthes aspera linn, a medicinal plant used for the treatment of wounds and ringworm in east Africa. Frontiers in Pharmacology. 6:274. https://doi.org/10.3389/fphar.2015.00274.

RENISHEYA JJMT, Johnson M, Mary UM, Arthy A. 2011. Antibacterial activity of ethanolic extracts of selected medicinal plants against human pathogens. Asian Pacific Journal of Tropical Biomedicine.1(1):S76-S78. https://doi.org/10.1016/S2221-1691(11)60128-7.

RIVERO-PEREZ N, Ayala-Martínez M, Zepeda-Bastida A, Meneses-Mayo M, Ojeda-Ramírez D. 2016. Anti-inflammatory effect of aqueous extracts of spent Pleurotus ostreatus substrates in mouse ears treated with 12-O-tetradecanoylphorbol-13-acetate. Indian Journal of Pharmacology. 48(2):141-144. https://dx.doi.org/10.4103%2F0253-7613.178826.

SALEM AFZ, Salem MZ, González-Ronquillo M, Camacho LM, Cipriano M. 2011. Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. Journal of Tropical Agriculture. 49: 95-98. http://jtropag.kau.in/index.php/ojs2/article/view/244

SULAIMAN GM, Hussien NN, Marzoog TR, Awad, HA. 2013. Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba. American Journal of Biochemistry and Biotechnology. 9(1): 41-46. https://thescipub.com/PDF/ajbbsp.2013.41.46.pdf.

WAHAB GA, Sallam A, Elgaml A, Lahhloub M, Afifi MS. 2018. Antioxidant and antimicrobial activities of Salix babylonica extracts. World Journal of Pharmaceutical Sciences. 6(4): 1-6. http://www.wjpsonline.org/.

WHO (World Health Organization). 2017. Antimicrobial resistance. https://www.who.int/antimicrobial-resistance/en/

WIEGAND I, Hilpert K, Hancock REW. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 3(2):163-175. https://doi.org/10.1038/nprot.2007.521.

Enlaces refback

  • No hay ningún enlace refback.