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ABSTRACT 
Stress-induced hyperthermia is an acute response that occurs in the short term in individuals who are facing 

a stressful stimulus, considering that this response can provide significant information on stress degree. 

However, it is not yet clear whether the neurological pathway can be modified to the degree to which stress 

is perceived. Furthermore, there is not enough information as to how factors that modify perception stress 

degree act on stress-induced Hyperthermia. Besides, research indicates that the thermal response possibly 

has a greater cardiovascular influence by generating energy resource consumption. In the same way, the 

factors that induce this response have been questioned, since recent evidence indicates that social factors 

such as the presence of conspecifics attenuate the thermal response, but, when coexistence or some other 

action like parenting is prevented, the response is to the reverse. For this reason, the objective of this article 

was to analyze the neurobiology of stress-induced hyperthermia and its conceptual difference with 

infectious fever, as well as to integrate the factors that modulate it, analyzing recent scientific advances in 

stress-induced thermal response. 

Keywords: temperature, stress, welfare, thermogenesis, thermal response. 
 

RESUMEN 

La hipertermia inducida por estrés es una respuesta aguda que se presenta a corto plazo en individuos que 

están frente a un estímulo estresante y que dicha respuesta puede aportar información significativa sobre 

el grado de estrés. Sin embargo, no es claro todavía si la vía neurológica pueda ser modificada al mismo 

grado en la que se percibe el estrés. Además, no se tiene suficiente claridad en cómo es que los factores 

que modifican el grado de percepción de estrés actúan sobre la Hipertermia Inducida por Estrés (SIH, por 

sus siglas en inglés). Asimismo, las investigaciones señalan que posiblemente la respuesta térmica tenga 

una mayor influencia cardiovascular al generar el consumo de recursos energéticos. De igual manera, los 

factores físicos que inducen dicha respuesta han sido cuestionados, ya que la evidencia reciente señala 

que además los factores sociales como la presencia de coespecíficos atenúan la respuesta térmica pero 

cuando se impide la convivencia o alguna otra conducta social como la crianza, la respuesta incrementa la 

SIH. Por tal motivo, el objetivo de este artículo es analizar la neurobiología de la hipertermia inducida por 

estrés y su diferencia conceptual con la fiebre infecciosa, así como integrar los factores que lo modulan, 

analizando los avances científicos recientes de la respuesta térmica inducida por estrés.  

Palabras clave: temperatura, estrés, bienestar, termogénesis, respuesta térmica. 
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INTRODUCTION 

Stress-induced hyperthermia (SIH) is defined as an integral part of a physiological 

response, characterized by an increase in body temperature that is generated from threats 

to homeostasis, caused by stressful stimuli. This increases survival chances. This thermal 

response to acute stress and the associated factors that modify it, have been of great 

interest to determine the welfare of the animals, since it has been considered that the 

variations in temperature are a measure reliable and sensitive to determine stress degree 

perceived by animals (Lees et al., 2020). Recent scientific findings indicate that 

temperature control is essential for survival (Song et al., 2016; Fuller-Jackson et al., 2017; 

Wang et al., 2019; Casas-Alvarado et al., 2020; Mota-Rojas et al., 2020). Living beings 

have developed over thousands of evolution years a great variety of adaptive mechanisms 

for the multiple alterations that the environment or their habitat can undergo (Morrison and 

Nakamura, 2011; Villanueva-García et al., 2020).  

 

Several studies have identified key elements of neurophysiological mechanisms 

responsible for the development of SIH. Their findings have determined that despite the 

existence of an important thermogenesis activation due to the consumption of brown 

adipose tissue (Brown adipose tissue; BAT), there is also an important thermogenesis of 

cardiac origin (Crestani, 2016). Which in both cases contributes to a decrease in the 

release of heat towards the external environment; however, the exact mechanism that 

intervenes in the thermal response modification is not entirely clear. However, a 

relationship between stressful stimuli and the deterioration of mediated baroreflex 

response has recently been described, through angiotensin receptors (Costa-Ferreira et 

al., 2016).  

 

Another question that continues to be studied is the participation of factors that induce 

stress or that can modify its response. In this sense, it has been possible to identify that 

the environmental stimulus, such as cold, generates a significant increase in animal 

temperature that face this stimulus, which will be called stressful (Miyamoto et al., 2017a). 

On the other hand, not only stressful stimuli of a physical nature cause SIH, it has been 

seen that psychological or emotional stress increases body temperature through 

mechanisms other than those associated with the fever that animals develop during 

infectious or inflammatory processes. Furthermore, it has been determined that social 

factors exert a greater influence on SIH than environmental ones, since it has recently 

been observed that SIH can be attenuated in the presence of conspecifics (Oka, 2018). 

In fact, if coexistence between animal groups is prevented or breeding in females is 

impossible, it can trigger a thermal response similar to social and emotional factors (Faraji 

and Metz, 2020).  
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For this reason, the objective of this article is to analyze the neurobiology of stress-induced 

hyperthermia and its conceptual difference with infectious fever; as well as integrating the 

factors that modulate it, analyzing recent scientific advances associated with the thermal 

response induced by stress. 

 

 

Conceptual difference between SIH and infectious fever  

SIH refers to a significant increase in basal body temperature, and its nature is usually 

short or medium in duration; followed by a gradual return to basal temperature, once the 

stimulus or the perceived stressful situation dissipates (Oka et al., 2001).  

 

In this context, Bittencourt et al., (2015), with the objective of determining the thermal 

response to stress stimuli in birds through telemetric records; they evaluated pigeons 

(Columbia livia) exposed to stressful stimuli. It was observed that the transfer from the 

cage, visual isolation and tonic immobility, caused an increase in body temperature for 

10-20 minutes and subsequently it was possible to decrease significantly. Thus, with this 

observation it was determined that temperature is a parameter associated with stress, but 

according to what the authors observed, it can also show specific attributes to characterize 

the stressor based on its type, direction and species. On the other hand, it has been 

observed that when the individual is repeatedly exposed to a stressful stimulus and can 

express a behavioral pattern similar to depression, chronic hyperthermia occurs that is 

low-grade and persistent (Oka, 2018).  

 

This has been related to a conditioned hyperthermia form, which refers to the increase in 

temperature caused by previous experiences during early or youthful age, due to an 

aversive memory between a certain stimulus and situation (Oka, 2018). An example of 

this is that if an animal receives an electric shock that is unfamiliar, a behavioral and 

autonomic response associated with fear is triggered when it is exposed again to the same 

stimulus ((Thompson et al., 2012; Wellman et al., 2016). In contrast, hyperthermia caused 

by infectious processes is called fever and it is a cardinal response typically related to 

sepsis or microorganism presence in the body (Evans et al., 2015). Unlike SIH, fever 

involves a high energy cost, since to produce a 1 ºC increase in body temperature, a 10-

15% increase in metabolic rate is required (Young and Saxena, 2014 ). 

 

As can be seen, it is clear that from a conceptual analysis, there is a difference between 

the possible causes of temperature increase in the body; however, both signaling tracks 

share a neuronal pathway that modulates thermal response. 
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https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.3390/bs2020057
https://doi.org/10.5665/sleep.5856
https://doi.org/10.1038/nri3843
https://doi.org/10.1186/cc13773


ABANICO VETERINARIO ISSN 2448-6132  abanicoacademico.mx/revistasabanico/index.php/abanico-veterinario 

 

4 
 

Temperature hypothalamic modulation in SIH and fever 

Although stress encompasses a series of both behavioral and physiological responses in 

order to face a stressful event (Yaribeygi et al., 2017), to understand the response to 

stress, whether infectious or emotional in origin; it is necessary to understand the 

physiological response that is triggered to assess how animal welfare is compromised 

(Lees et al., 2020). In other words, when an individual faces a stressful event, different 

related physiological responses can be triggered, including an increase in body 

temperature ((Vinkers et al., 2009) and metabolic consequences could be different. 

proposed that both in humans and animals, stress perception seems to correlate with 

high activity in the Autonomous Nervous System (ANS) and with stress high levels (such 

as anxiety or fear), generating an increase in the frequency heart rate and body 

temperature level (Bi, 2014; Houtepen et al., 2011). For this reason, it has been 

considered as a physiological response associated with stress degree experienced by 

the body (Lees et al., 2020).  

Emotional stress or fever increases body temperature through independent cytokine and 

prostaglandin E2 (PGE2) mechanisms. Thus, the systemic administration of non-steroidal 

analgesics (NSAIDs), such as phenylbutazone or indomethacin, fails to inhibit this type of 

stress-induced hyperthermia (Zhang et al., 2010). In contrast, drugs that possess 

anxiolytic properties, such as benzodiazepines and serotonin (5-HT) receptor agonists, 

such as buspirone and flesinoxane, do have effects on reducing the magnitude of stress-

induced hyperthermia (Rygula et al., 2008; Vinkers et al., 2010). 

These findings have shown that ANS, over the whole sympathetic nervous system (SNSi) 

influences temperature modulation while main effector organs are BAT and blood vessels 

(Nakamura, 2015). In the first case it is controlled by SNSi innervation through 3 

adrenoreceptors, which are predominantly expressed, and in some studies it has been 

shown that the hypothalamic-medullary glutamatergic signal is the one that drives 

sympathetic thermogenesis in BAT (Kataoka et al., 2014). On the contrary, in the blood 

vessels there is a decrease in heat loss by radiation, due to cutaneous vasoconstriction, 

which is measured by a sympathetic response of  adrenoreceptors that generate the 

decrease in dermal blood flow ((Nakamura, 2015; Ikoma et al., 2018)  

Additionally, the hypothalamic-pituitary-adrenal (HPA) axis is activated, generating the 

stimulating hormone neurosecretion of the adrenal cortex, which in turn increases the 

secretion of glucocorticoids in the adrenal cortex; action that stimulates two catabolic 

events: gluconeogenesis and lipolysis, which contributes to increasing thermogenic 

activity (Oka, 2018; Wang et al., 2015). Likewise, during stress perception, a moderate 

tachycardia is induced without decreasing the stroke volume, thereby providing support 

to increase necessary oxygen supply for BAT consumption and distribute heat to the rest 

of the body. This process has been called “cardiac thermogenesis” (Morrison, 2011). 

https://doi.org/10.17179/excli2017-480
https://doi.org/10.3390/ani10010172
https://doi.org/10.1016/j.physbeh.2009.04.004
https://doi.org/10.1016/j.cmet.2014.07.017
https://doi.org/10.1016/j.physbeh.2010.09.002
https://doi.org/10.3390/ani10010172
https://doi.org/10.1113/jphysiol.2010.195099
https://doi.org/10.1097/FBP.0b013e3282fe8871
https://benthamopen.com/contents/pdf/TOPHARMJ/TOPHARMJ-4-15.pdf
https://doi.org/10.1080/23328940.2015.1070944
https://doi.org/10.1016/j.cmet.2014.05.018
https://doi.org/10.1080/23328940.2015.1070944
https://doi.org/10.3389/fphys.2018.00832
https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.3892/br.2015.445
https://doi.org/10.2741/3677


ABANICO VETERINARIO ISSN 2448-6132  abanicoacademico.mx/revistasabanico/index.php/abanico-veterinario 

 

5 
 

In this sense, SNSi neurons integrate signals from different brain regions, so that neurons 

specialized in thermogenesis for BAT and vasoconstriction are predominantly found in 

the rostral medullary raphe region (rMR), which involves the nucleus of raphe pallidus 

rostral and raphe magnus (Nakamura, 2004; Nakamura et al., 2005). Likewise, Nakamura 

(2015) reports that through nanoinjections use of drugs in vivo in the rat brain and 

evaluations by thermotelemetry, it was demonstrated that both rMR and the dorsomedial 

hypothalamus (DMH) mediate stress-induced thermogenesis. Possible brain regions that 

are involved in SIH include the prefrontal cortex, medial amygdala, lateral habenula, and 

orexin-containing neurons (Oka, 2018). Therefore, being these regions in which neurons 

that contain the vesicular glutamate transporter (VGLUT 3) are expressed, they have 

been identified as glutamatergic neurons (Nakamura, 2004).  

Stornetta et al., (2005) observed that through the histological and immune-reactive 

detection of VGLUT 3 mRNA in medullary raphe, 89% of neurons showed both marker 

expression; therefore, VGLUT 3 neurons contain receptors for both serotonin and GABA. 

This observation indicates that glutamatergic receptor activation participate in thermal 

response modulation to acute stress (Horiuchi et al., 2004). In contrast, when glutamate 

receptor blockade in rMR is exerted with the GABA inhibitor use as such as muscimol, 

not only thermogenesis, but also hyperthermia and tachycardia due to stress are inhibited 

(Kataoka et al., 2014; Nakamura, 2015) (Figure 1).  

On the contrary, in fever induced by infection and inflammation, the increase in 

temperature is considered a common response in sick patients, through interaction of 

exogenous pyrogens by pathogenic microorganism presence with interleukin (IL) - 1, IL-

6 and tumor necrosis factor  (TNF-) (Walter et al., 2016). These inducers stimulate the 

production of pro-inflammatory cytokines, which act directly in the preoptic area of the 

hypothalamus (POA), the organum vasculosum neuronal pathway of the terminalis 

lamina (Schortgen, 2012). An area that is highly vascularized and lacks a blood-brain 

barrier, which allows it to be stimulated very easily (Walter et al., 2016). 

https://doi.org/10.1523/JNEUROSCI.1219-04.2004
https://doi.org/10.1016/j.neures.2004.09.007
https://doi.org/10.1080/23328940.2015.1070944
https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.1523/JNEUROSCI.1219-04.2004
https://doi.org/10.1002/cne.20742
https://doi.org/10.1152/ajpregu.00221.2004
https://doi.org/10.1016/j.cmet.2014.05.018
https://doi.org/10.1080/23328940.2015.1070944
https://doi.org/10.1186/s13054-016-1375-5
https://www.minervamedica.it/en/journals/minerva-anestesiologica/article.php?cod=R02Y2012N11A1254
https://doi.org/10.1186/s13054-016-1375-5
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Figure 1. Temperature modulation and mechanisms related to SIH development 

 

Likewise, prostaglandin PGE2, which is produced in endothelial cells at the brain level, 

becomes the main pyrogenic mediator of fever (Engström et al., 2012). However, this 

chemical mediator can also be produced by hematopoietic cells after the activation of the 

Toll 4 receptor (TLR4) mediated by lipopolysaccharides (LPS) of bacteria, which, when 

in contact with the blood-brain barrier, initiate the thermal elevation known as fever 

(Hasday et al., 2014; Saper et al., 2012). PGE2 acts on the POA by slowing down the 

firing speed of heat-sensitive neurons, causing an increase in body temperature, favoring 

febrile states (Clarke and Pörtner, 2010) (Figure 2) .This evidence makes infectious fever 

is associated with elevated inflammatory markers, which can be attenuated with non-

opioid NSAIDs, such as paracetamol, by blocking cyclooxygenase 3 at the brain level, 

thus decreasing the synthesis of PGE2 (Olivier et al., 2003; Jahr and Lee, 2010). 

Therefore, there is a great similarity between infectious fever and SIH, since in both cases 

the mediation pathway is given by POA, due to the abundance of excitatory glutamatergic 

neurons. However, the difference between the two phenomena is the origin that will 

trigger the hyperthermia response, which can be serotoninergic and glutamatergic, as in 

SIH; while for infectious origin fever, the temperature increases will correspond to the 

presence of exogenous pyrogens (Figure 2). 

 

https://doi.org/10.1210/en.2012-1375
https://doi.org/10.1002/cphy.c130019
https://doi.org/10.1038/nn.3159
https://doi.org/10.1111/j.1469-185X.2010.00122.x
https://doi.org/10.1016/S0014-2999(03)01326-8
https://doi.org/10.1016/j.anclin.2010.08.006
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Modulating factors of stress-induced thermal response 

There are several factors that must be taken into account for the stress-induced thermal 

cascade to be generated, including: 

a)  Nature and intensity of the stressor 

In a study by Watanabe (2015), they evaluated 40 mice by infrared thermography, which 

were under three different social conditions: alone, immobilized and restrained alone mice 

with cage mates that moved freely; found that those animals that remained alone had a 

lower SIH thermal response, compared to immobilized and restrained single mice with 

free-moving cage mates (Watanabe, 2015). 

 

 

 

 

Figure 2. Comparison of temperature modulation during infectious fever and SIH development 

 

 

 

 

https://doi.org/10.1016/j.brainres.2015.07.019
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On the other hand, Hayashida et al., (2010), who tried to confirm that SIH is typically 

monophasic; that is, after the stress, the body temperature returns to the baseline. They 

evaluated Wistar strain male rats, exposed to emotional experiences such as social 

defeat and periods of darkness; this last group was considered as control. The authors 

reported that at the time of being under social defeat, the rats presented a significant 

increase of 0.2 ºC in temperature, compared to the rats that were exposed to darkness. 

It was concluded that depending on the type of stressor and its nature, it was social, light 

or spatial, a sustained thermal response can be triggered and even, after stimulus 

habituation, the hyperthermia is reversed until reaching the basal temperature. 

b) Species and sex 

Similar to what occurs in the face of stressor nature, the morpho-physiological and 

behavioral differences also have an effect on thermal response modulation (Oka, 2018). 

Dymon and Fewell (1998), evaluated the thermal response of male and female guinea 

pigs, against the exposure of a simulated open field, it was observed that neither the 

males nor the females developed SIH; however, in the case of females, there was a lower 

value of body temperature. This observation is in contrast to that reported in the study by 

Dallmann et al., (2006), who found that social confrontation generates SIH, due to the 

increase in corticosterone, approximately between 10 to 30 minutes after exposure to the 

stressor. It should be noted that other authors have determined that SIH can be prolonged 

60-120 minutes after the noxious stimulus, which was presented by performing an 

immune-staining analysis for the Fos receptor in the preoptic and periolivar nuclei 

(Veening et al., 2004). This last evidence agrees with what was recently observed by 

Lees et al., (2020), investigated the relationship between temperament traits, handling 

and SIH. To do this, they recorded the rectal temperature of 60 pure Angus breed steers, 

which were exposed to a standardized manipulation such as immobilization in the box for 

30 seconds; also having a retention per group and immobilization in the sleeve for 60 

seconds.  

In this study, the temperaments evaluated were: agitator score, crush score, and flight 

speed. Their findings report that there was a moderate correlation between rectal 

temperature with flight speed and crush score (r = 0.37, r = 0.31). It is worth mentioning 

that, as observed by the authors, regardless of sex and temperament traits; rectal 

temperature showed a more significant relationship with time. It was concluded that the 

degree of expression or the increase in temperature is related to the animal species that 

presents it, probably due to a difference in receptor expression in the POA. 

 

However, despite the fact that both in the guinea pig and in cattle, the evidence shows 

that there is no sex significant influence on SIH expression. Some studies have indicated 

that SIH is expressed to a greater extent in females. In this sense, Rosinger et al., (2017) 

https://doi.org/10.1016/j.physbeh.2010.04.027
https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.1016/S0031-9384(98)00198-X
https://doi.org/10.1258/002367706776319015
https://doi.org/10.1016/j.pnpbp.2004.05.007
https://doi.org/10.3390/ani10010172
https://doi.org/10.1016/j.neuroscience.2017.08.016


ABANICO VETERINARIO ISSN 2448-6132  abanicoacademico.mx/revistasabanico/index.php/abanico-veterinario 

 

9 
 

mention that female rats have 1.3 ºC higher temperature than males. This could be due 

to a differential response of the HPA axis, in the face of stressors; possibly because 

estrogen can improve the function of this axis and therefore of the corticotropin-releasing 

hormone, which has been associated with the thermal effect (Oka, 2018). In addition to 

this, it was recently observed in female mice that SIH occurred when the female was 

deprived of breeding; however, this effect did not show a correlation with circulating 

cortisol levels (Faraji and Metz, 2020). 

 

In summary, a significant difference has been observed between SIH response, in relation 

to species and sex; which can be explained by a difference in receptor expression the 

responsible for signaling the thermal response, although some studies do not provide 

sufficient data to establish a clear answer. Therefore, it is necessary to continue 

developing studies to answer these questions. 

c)  Environmental factors (ambient temperature) 

It has been pointed out that the magnitude in which the SIH is expressed may differ with 

the values of ambient temperature. In this regard, Herborn et al., (2015), demonstrated 

that rats exposed to a low temperature (8 ºC) presented higher SIH, than those animals 

kept at ambient temperature (23 ºC), or higher temperatures (30 ºC). It was concluded 

that exposure to cold can cause a higher SIH. On the other hand, it has been observed 

that in rats incubated at a temperature between 11 and 25 ºC, SIH response did not 

present a significant difference (Oka, 2018). 

In order to check whether exposure to cold alters SIH expression degree, Miyamoto et 

al., (2017a), evaluated mice housed at 5 °C (acclimatized to cold) and at 25 °C (controls) 

for 4 weeks . The SIH magnitude was observed to be greater in cold-acclimatized rats 

than in control rats. The explanation suggested by the researchers is that exposure to 

cold leads to the pigmentation of white adipose tissue and the consequent increase in 

thermogenesis in BAT, due to the accelerated activation of sympathetic β3 

adrenoreceptors. These same authors report that the response and magnitude SIH is 

affected in mice previously stressed with exposure to cold, due to LPS stimulation effect; 

however, cold-induced stress did not alter baseline serum corticosterone levels, 

suggesting that exposure to cold increases susceptibility to LPS, leading to higher SIH 

(Miyamoto et al., 2017b). Therefore, the Environmental temperature below the comfort 

limit zone mainly affects the thermal response to stress and the susceptibility to pyrogens, 

compared to exposure to high temperatures. 

d) Social factors 

Another important aspect that influences SIH development are social factors, such as the 

presence of other individuals or the confrontations between them. Regarding the first 

case, it has been observed that the SIH can be higher when the animals are alone or in 

https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.3389/fnbeh.2020.00079
https://doi.org/10.1016/j.physbeh.2015.09.032
https://doi.org/10.1016/B978-0-444-64074-1.00035-5
https://doi.org/10.1248/bpb.b16-00343
https://doi.org/10.1159/000454815
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restriction, but with the presence of congeners that move freely (Watanabe, 2015). This 

increase in temperature can be attenuated when the individuals are paired after the 

perception of a stressful event (Kiyokawa et al., 2004; Kiyokawa et al., 2007; Kiyokawa 

et al., 2014). Even this response persists if there is a physical barrier, which has been 

explained by an influence of odoriferous substances released by conspecifics that are 

detected by the olfactory system, with this it is possible to carry out a measure of social 

damping, without the need for contact physical (Kiyokawa et al., 2009; Takahashi, 2014). 

It is worth mentioning that another important social aspect is the presence of young 

animals or breeding opportunity for. In this sense, it has been pointed out that when the 

opportunity to breed is limited to females, SIH is accentuated compared to rats that did 

manage to carry out this behavior (Faraji and Metz, 2020). However, in this regard it is 

also necessary to consider the affective and emotional links that favor the release of 

substances, such as oxytocin, that counteract the stressful effects. 

 

Participation of cardiac thermogenesis in the development and SIH modulation 

Acute stress can affect cardiovascular functions, for example increasing blood pressure; 

therefore, it has been considered as a physiological impact factor in the development and 

modulation of SIH (Crestani, 2016). 

 

In relation to this and with the objective of determining the angiotensin II participation on 

the type1 Ang-II (AT1) both in homotypic and heterotypic emotional dysfunctions, Costa-

Ferreira et al., (2016) compared the effect of an AT1 receptor antagonist (Losartan 30-

mg/ kg/ day orally), on automatic and cardiovascular changes in rats. They observed that 

sympathetic tone increased in response to heart stressor, decreasing the cardiac 

parasympathetic activity, in addition, when a selective AT1 receptor blocker such as 

Losartan was administered, and the baroreflex deterioration was inhibited, as was the 

autonomic activity. Likewise, it was possible to identify the increase in levels of circulating 

corticosterone and a reduction in body weight. It was concluded that there is an important 

participation of AT1 in the autonomic changes caused by acute stress. This new evidence 

is additional to the modification of the cardiovascular pattern, due to  adrenoreceptor 

stimulation that generate a tachycardia in aversive situations (dos Reis et al., 2014; 

Crestani, 2016). 

 

On the other hand, it has been investigated whether social damping can inhibit SIH, since 

it has been observed that in male Wistar rats in the presence of a partner or a conspecific, 

stressor perception can be inhibited with the consequent reduction in SIH response 

(Kiyokawa et al., 2004; Lkhagvasuren and Oka, 2017). However, it has recently been 

discovered that without the need for social contact, SIH response is inhibited due to the 

https://doi.org/10.1016/j.brainres.2015.07.019
https://doi.org/10.1037/0735-7044.118.4.798
https://doi.org/10.1111/j.1460-9568.2007.05969.x
https://doi.org/10.1016/j.bbr.2014.03.043
https://doi.org/10.1016/j.bbr.2014.03.043
https://doi.org/10.1111/j.1460-9568.2009.06618.x
https://doi.org/10.3389/fnbeh.2014.00072
https://doi.org/10.3389/fnbeh.2020.00079
https://doi.org/10.3389/fphys.2016.00251
https://doi.org/10.3389/fphar.2016.00262
https://doi.org/10.3109/10253890.2014.930429
https://doi.org/10.3389/fphys.2016.00251
https://doi.org/10.1037/0735-7044.118.4.798
https://doi.org/10.14814/phy2.13204
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uptake of odors (Kiyokawa, 2015); however, it is not yet clear whether the familiar odor 

effect could have the same answer to SIH.  

In this context, Kiyokawa et al., (2014) studied familiarity effect with a conspecific on 

social damping intensity; for this, they evaluated the response of male Wistar rats housed 

with a family conspecific for 3 weeks. These same animals were subsequently exposed 

to a conditioned stimulus in a clean or scented control box with unknown or familiar 

conspecific. They observed that the subjects showed freezing and Fos expression in the 

paraventricular nucleus; but this response was nullified when they were exposed to a 

conspecific smell, showing a greater effect with the familiar smell. Thus, concluding that 

the smell of a familiar conspecific is more effective in socially dampening conditioned 

responses to fear. 

For all the foregoing, the evidence indicates that probably the vascular changes produced 

by acute stress that affect the thermal response cannot be explained only with the HPA 

axis response and catecholamine secretion. Therefore, cardiovascular changes caused 

by stress may have more than one physiological pathway that can alter the temperature 

and worsen cardiovascular pathologies; however, these changes are inhibited by the 

conspecific presence, which in the future should be a field study to determine if inhibition 

follows the same feedback pathway at the neurological level. 

 

CONCLUSIONS 

SIH is a physiological response to situations perceived as threatening or distressing, 

which can be acute, chronic and even anticipatory or conditioned, related to aversive 

memories; thus, due to stress perception, energy resources are optimized for individual 

preparation, for the fight or the escape, reason why the thermogenesis is generated when 

using the BAT and the cardiogenic changes. For this reason, these factors cause a 

physiological difference between emotional hyperthermia and infectious origin fever, since 

in emotional hyperthermia there is no participation of cytokines released by the immune 

system. 

With regard to the factors that influence SIH appearance, it is clear that physical and 

especially environmental factors play an important role; but recently there has been a 

greater interest in investigating the social components, since the presence of conspecifics 

can have a direct and important influence on SIH response. 

Finally, it should be noted that the vascular changes produced by acute stress can affect 

the thermal response in SIH, so further research is required in the future to explain the 

participation level of the HPA axis and catecholamines. This situation could complement 

the idea that cardiovascular changes caused by stress may have more than one 

physiological pathway that modulates SIH response 

https://doi.org/10.1007/7854_2015_406
https://doi.org/10.1016/j.bbr.2014.03.043
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