Efecto de la fermentación con Aspergillus oryzae sobre el contenido fitoquímico y nutricional de cereales

Autores/as

Palabras clave:

fermentación en estado sólido, hongos filamentosos, compuestos bioactivos, fenoles

Resumen

El objetivo del presente trabajo fue fermentar granos de cereales con Aspergillus oryzae a diferentes tiempos (0, 3, 5 y 7 días) para incrementar su contenido fenólico total, proteico y taninos condensados. Para esto, se utilizaron granos de cuatro cereales: maíz, avena, cebada y sorgo. Los granos se sometieron a una fermentación en estado sólido con una cepa de Aspergillus oryzae. Los mayores incrementos de proteína cruda en maíz, sorgo y avena fueron observados a los 5 y 7 días de fermentación. En relación al contenido fenólico, se mostró el mayor contenido a los 7 días en todos los granos. Por otro lado, el contenido de taninos condensados mostró un mayor incremento en maíz y sorgo a los 5 días de fermentación, mientras que en avena se alcanzó a los 7 días. La cebada no mostró diferencias de 3 a 7 días. En conclusión, la fermentación en estado sólido incrementó el contenido fitoquímico y nutricional de cereales, al manipular el tiempo de fermentación.

 http://dx.doi.org/10.21929/abavet2025.5      

e2024-39

https://www.youtube.com/watch?v=ILxhUfRZRLA

 

Citas

ABD Razak DL, Abd Rashid NY, Jamaluddin A, Sharifudin SA, Long K. 2015. Enhancement of phenolic acid content and Antioxidant Activity of Rice Bran Fermented with Rhizopus oligosporus and Monascus purpureus. Biocatalysis and Agricultural Biotechnology. 4(1): 33-38.

https://doi.org/10.1016/j.bcab.2014.11.003

ALTOP A, Coskun I, Filik G, Kucukgul A, Bekiroglu YG, Cayan H, Gungor E, Sahin A, Erener G. 2018. Amino acid, mineral, condensed tannin, and other chemical contents of olive leaves (Olea europaea L.) processed via solid-state fermentation using selected Aspergillus niger strains. Ciencia e Investigación Agraria. 45(2): 220-230.

https://openaccess.ahievran.edu.tr/xmlui/handle/20.500.12513/4213

AOAC. Association of Official Analytical Chemists. 1990. Official methods of analysis. 15th. ed. Association of Official Analytical Chemists. Arlington, VA.

https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

BALLI D, Bellumori M, Paoli P, Pieraccini G, Di Paola M, De Filippo C, Di Gioia D, Mulinacci N, Innocenti M. 2019. Study on a fermented whole wheat: phenolic content, activity on PTP1B enzyme and in vitro prebiotic properties. Molecules. 24(6):1120.

https://doi.org/10.3390%2Fmolecules24061120

BHANJA-DEY T, Kuhad RCa. 2014. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Letters in Applied Microbiology. 59 (5): 493-499.

https://doi.org/10.1111/lam.12300

BHANJA-DEY T, Kuhad RCb. 2014. Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnology Reports. 4: 120-127.

https://doi.org/10.1016/j.btre.2014.09.006

BORRAS SLM, Torres VG. 2016. Producción de alimentos para animales a través de fermentación en estado sólido-FES. Orinoquia. 20(2): 47-54. ISSN 0121-3709.

http://www.scielo.org.co/scielo.php?pid=S0121-37092016000200007&script=sci_arttext

CABRERA-SOTO ML, Salinas-Moreno Y, Velázquez-Cardelas A, Espinosa-Trujillo E. 2009. Contenido de fenoles solubles e insolubles en las estructuras del grano de maíz y su relación con propiedades físicas. Agrociencia. 43: 827-839. ISSN 2521-9766.

https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952009000800006

CAI S, Wang O, Wu W, Zhu S, Zhou F. Baoping J, Gao F, Zhang D, Liu J, Cheng Q. 2012. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolic content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). Journal of Agricultural and Food Chemistry. 60: 507- 513. https://doi.org/10.1021/jf204163a

CAMACHO-ESCOBAR MA, Ramos-Ramos DA, Ávila-Serrano NY, Sánchez-Bernal EI, López-Garrido SJ. 2020. Las defensas físico-químicas de las plantas y su efecto en la alimentación de los rumiantes. Terra Latinoamericana. 38(2): 443-453. ISSN 2395-8030.

https://doi.org/10.28940/terra.v38i2.629

CARDOSO-GUTIÉRREZ E, Aranda-Aguirre E, Robles-Jimenez LE, Castelán-Ortega OA, Chay-Canul AJ, Foggi G, Angeles-Hernández JC, Vargas-Bello-Pérez E, González-Ronquillo M. 2021. Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Veterinary and Animal Science. 14: 1-12.

https://doi.org/10.1016/j.vas.2021.100214

CHEN L, Madl RL, Vadlani PV. 2013. Nutritional Enhancement of soy meal via Aspergillus oryzae solid-state fermentation. Cereal Chemistry. 90(6):529-534.

https://doi.org/10.1094/CCHEM-01-13-0007-R

CHEN L, Vadlani PV, Madl RL. 2014. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation. Journal of the Science of Food and Agriculture. 94(1): 13-118.

https://doi.org/10.1002/jsfa.6209

CHEN L, Zhao Z, Yu W, Zheng L, Li L, Gu W, Xu H, Wei B, Yan X. 2021. Nutritional quality improvement of soybean meal by Bacillus velezensis and Lactobacillus plantarum during two-stage-solid-state fermentation. AMB Express. 11(23): 1-11.

https://doi.org/10.1186/s13568-021-01184-x

CUBILLOS-ORJUELA DI, Rodríguez-Montana A, Rache LY, Borrás-Sandoval LM. 2024. Tamo de cereales como suplemento alimenticio procesado por fermentación en estado sólido. Ciencia en Desarrollo. 15(1):1-14.

https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/17073

DHULL SB, Punia S, Kidwai MK, Kaur M, Chawla P, Purewal SS, Sangwan M, Palthania S. 2020. Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: effect on phenolic compounds, mineral content and their bioavailability. Legume Science. 2: e37.

https://onlinelibrary.wiley.com/doi/full/10.1002/leg3.37

DUHAN JS, Chawla P, Kumar S, Bains A, Sadh PK. 2021. Proximate composition, polyphenols and antioxidant activity od solid state fermented peanut press cake. Preparative biochemistry & Biotechnology. 51(4):1-10.

https://doi.org/10.1080/10826068.2020.1815060

ESPITIA-HERNÁNDEZ P, Ruelas-Chacón X, Chávez-González ML, Ascacio-Valdés JA, Flores-Naveda A, Sepúlveda-Torre L. 2022. Solid-state fermentation of sorghum by Aspergillus niger: effects on tannin content, phenolic profile and antioxidant activity. Foods. 11 (19):1-15. https://www.mdpi.com/2304-8158/11/19/3121

GEBRU YA, Sbhatu DB. 2020. Effects of fungi-mediated solid-state fermentation on phenolic contents and antioxidant activity of brown and white teff (Eragrostis tef (Zucc.) trotter) grains. Journal of Food Quality. 2020: 1-11.

https://doi.org/10.1155/2020/8819555

GUTIÉRREZ-GRIJALVA EP, Ambriz-Pérez DL, Leyva-López N, Castillo-López RI, Heredia JB. 2016. Bioavailability of dietary phenolic compounds: review. Revista Española de Nutrición Humana y Dietética. 20(2): 140-147.

https://doi.org/10.14306/renhyd.20.2.184

HEIMLER D, Vignolini P, Dini M, Romani A. 2005. Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. Dry Beans. Journal of Agriculture and Food Chemestry. 53(8): 3053-3056. https://doi.org/10.1021/jf049001r

HUANG R, Romero P, Belanche A, Ungerfeld EM, Yanez-Ruiz D, Morgavi DP, Popova M. 2023. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro -Part 1. Dairy cows. Animal. 17(5): 100788.

https://doi.org/10.1016/j.animal.2023.100788

LIU W, Dun M, Liu X, Zhang G, Ling J. 2022. Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris. International Journal of Food Properties. 25(1): 477-491. https://doi.org/10.1080/10942912.2022.2048009

SAHARAN P, Sadh P, Duhan JS. 2017. Comparative assessment of effect of fermentation on phenolics, flavonoids and free radical scavenging activity of commonly used cereals. Biocatalysis and Agricultural Biotechnology. 12: 236-240.

https://doi.org/10.1016/j.bcab.2017.10.013

SÁNCHEZ-MAGAÑA LM, Reyes-Moreno C, Milán-Carrillo j, Mora-Rochín S, Léon-López l, Gutiérrez-Dorado R, Cuevas-Rodríguez EO. 2019. Influence of solid-state bioconversión by Rhizopus oligosporus on antioxidant activity and phenolic compounds of maize (Zea mays L.). 53: 45-57.

https://agrociencia-colpos.org/index.php/agrociencia/article/view/1750/1750

SÁNCHEZ-GARCÍA J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. 2022. Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus. Bioresources and Bioprocessing. 9(51):1-12.

https://doi.org/10.1186/s40643-022-00542-2

SÁNCHEZ GFFL. 2022. Fitoquímica. Editorial UNAM FES Zaragoza. México. Pp. 133. ISBN:978-607-30-6019-6.

https://www.zaragoza.unam.mx/wp-content/2022/Publicaciones/libros/cbiologia/Fitoquimica.pdf

SANDHU KS, Punia S, Kaur M. 2016. Effect of duration of solid-state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT-Food Science and Technology. 71: 323-328. https://doi.org/10.1016/j.lwt.2016.04.008

SHAHIDI F, Yeo J. 2016. Insoluble-Bound Phenolics in Food. Molecules. 21(9):1216

https://pubmed.ncbi.nlm.nih.gov/27626402/

TEREFE ZK, Omwamba MN, Nduko JM. 2021. Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Science & Nutrition. 9: 6343-6352.

https://onlinelibrary.wiley.com/doi/10.1002/fsn3.2599

TORRES LC, Ramírez GN, Ascacio VJ, Serna CL, Dos Santos CMT, Contreras EJC, Aguilar CN. 2019. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of mexican mango seed: a promising source of natural antioxidants. LWT-Food Science and Technology. 112: 108236.

https://doi.org/10.1016/j.lwt.2019.06.003

XIAO Y, Rui X, Xing G, Wu H, Li W, Chen X, Jiang M, Dong Ma. 2015. Solid state fermentation with cordyceps militaris SN-18 enhanced antioxidant capacity and DNA damage protective effect of oats (Avena sativa L.). Journal of Functional foods. 16: 58-73.

https://doi.org/10.1016/j.jff.2015.04.032

XIAO Y, Xing G, Rui X, Li W, Chen X, Jiang M, Dong Mb. 2015. Effect of solid-state fermentation with Coryceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT-Food Science and Technology. 63: 1317-1324.

https://doi.org/10.1016/j.lwt.2015.04.046

XIAO Y, Sun M, Zhang Q, Chen Y, Miao J, Rui Y, Dong M. 2018. Effects of Cordyceps militaris (L.) Fr. Fermentation on the nutritional physicochemical, functional properties and angiotensin I converting enzyme inhibitory activity of red beans (Phaseolus angularis [Willd.] W.F. Wight.) flour. Journal of Food Science and Technology. 55(4):1244-1255.

https://link.springer.com/article/10.1007/s13197-018-3035-z

XU LN, Guo S, Zhang S. 2018. Effects of solid-state fermentation with three higher fungi on the total phenol contents and antioxidant properties of diverse cereal grains. FEMS Microbiology Letters. 365(16): 1-8. https://doi.org/10.1093/femsle/fny163

Publicado

2025-04-29

Número

Sección

Notas de Investigación