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Abstract 

American trypanosomiasis is one the globally neglected tropical disease, and is cause by the protozoan 

haemoflagellate Trypanosoma cruzi (Tc). Currently, the anti-Tc drugs are limited and no vaccine is available. 

The objective of the study was to determine the effects of silver nanoparticles (AgNPs) against 

trypomastigotes of the Sylvio X10/4 (TcI) and Esmeraldo (TcII) strains. The AgNPs were obtained by the 

reduction method and a structural characterization was carried out. The cytotoxic activity of the AgNPs (anti-

Tc activity) was determined by calculating the values of half the maximum inhibitory concentration (IC50) in 

HaCaT cells and parasites. AgNPs showed no-cytotoxicity against HaCaT cells at the IC50 values assayed 

in parasites, and the calculated IC50 trypomastigotes was 4.05 µg/ml and 6.16 µg/ml for TcI and TcII strains, 

respectively. AgNPs were more active against both Trypanosoma cruzi strains than nifurtimox (400 µg/ml) 

in vitro assays. These results lay the groundwork for further evaluation of AgNPs, to investigate its 

chemotherapeutic value to figh T. cruzi infection in animal models. 

Keywords: Trypanosoma cruzi, Chagas, AgNP, in vitro, silver. 

Resumen 

La tripanosomiasis Americana es una de las enfermedades tropicales desatendidas a nivel mundial, y es 

causada por el protozoario hemoflagelado Trypanosoma cruzi (Tc). Actualmente, los fármacos anti-Tc son 

limitados y no hay vacuna disponible. El objetivo de esta investigación fue evaluar el efecto de las 

nanopartículas de plata (AgNPs) contra los tripomastigotes de las cepas Sylvio X10/4 (TcI) y Esmeraldo 

(TcII). Las AgNPs se obtuvieron por el método de reducción y se les realizó una caracterización estructural. 

La actividad citotóxica de las AgNPs (actividad anti-Tc) se determinó mediante el cálculo de los valores de 

la mitad de la concentración inhibitoria máxima (IC50) en las células HaCaT y en los parásitos. Las AgNPs 

no mostraron citotoxicidad contra las células HaCaT en los valores de IC50 probadas en los parásitos, y la 
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IC50 calculada en los tripomastigotes fue de 4.05 µg/ml y de 6.16 µg/ml en las cepas TcI y TcII 

respectivamente. Las AgNPs fueron más activas contra las dos cepas de Trypanosoma cruzi, que el 

nifurtimox (400 µg/ml) in vitro. Estos resultados sientan las bases para la evaluación mayor de las AgNPs, 

por investigar su potencial quimioterapéutico para combatir la infección por T. cruzi en modelos animales. 

Palabras claves: Trypanosoma cruzi, Chagas, AgNP, in vitro, plata. 

 

INTRODUCTION 

Trypanosoma cruzi (T. cruzi) is a flagellated protozoan from the Kinetoplastida order (El-

Sayed et al., 2005). It is the causative agent of American trypanosomiasis, a vector-borne 

parasitic disease endemic to South America, Central America and Mexico. T. cruzi 

represents a major public health problem, with approximately 8 million people infected 

and 25 million at risk of infection (Ibáñez-Cervantes et al., 2018). In 3-5% of acutely 

affected patients, infection may result in several conditions: 1) myocarditis, which may 

progress to heart failure and death; 2) destructive lesions of cardiomyocytes and cardiac 

nerves, which may also progress to heart failure; or 3) meningoencephalitis (James et al., 

2005). In chronically infected patients, the disease may go unnoticed for several years, 

until 20-35% of these patients develop irreversible lesions of the autonomic nervous 

system. Chagas disease represents the leading cause of cardiac lesions in young, 

economically productive adults in endemic countries (El-Sayed et al., 2005; James et al., 

2005). 

Currently, treatment options are limited and no vaccine is available to prevent or control 

T. cruzi infection. The drugs approved by WHO for the treatment of Chagas disease, such 

as nifurtimox (NFMX) and benznidazole (BNZ), have at least four disadvantages 

(Colantonio et al., 2016).  First, due to the harsh side effects of these drugs, about 40% of 

patients drop out of treatment. Secondly, these drugs work most effectively during the 

acute phase of the infection; however, as it is difficult to detect, most people start drug 

treatment until the chronic phase of the disease has been established, with a consequent 

reduction in the antiparasitic efficacy of the drugs (Colantonio et al., 2016). Third, public 

access to therapeutic drugs is limited (Chaves et al., 2017). Fourth, some T. cruzi strains 

are resistant to NFMX and BZN, which makes their efficacy suboptimal (Toledo et al., 

2004). These factors emphasize the need to develop better anti‒T. cruzi drugs and/or new 

treatment strategies for American trypanosomiasis. 

Current medical trends include nanomaterials, especially noble metals such as gold and 

silver. These materials have had biomedical applications since ancient times (Ge et al., 

2014). Recent research regarding gold nanoparticles has been oriented to the treatment 

of cancer, while silver nanoparticles (AgNPs) have been used to fight pathogens (bacteria, 

fungi, viruses and protozoa) (Ge et al., 2014). 
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Crystalline silver nanostructures are available in many shapes and sizes (Sun et al., 2002) 

that can be used as medical treatments (Dankovich et al., 2011; Dubas et al., 2006; 

Kokura et al., 2010; Lee et al., 2006), but the effect of silver nanoparticles on parasitic 

protozoa is  still incompletely understood (Mao et al., 2016). In this sense, two studies 

have reported that traditional method to synthesize the AgNPs may have cytotoxic 

properties against the protozoa pathogens Leishmania tropica and Toxoplasma gondii 

(Allahverdiyev et al., 2011; Adeyemi et al., 2017) and although recently Brito et al., 2020 

biosynthesized AgNPs from corn cobs containing xylans were able of causing death of 

the Y strain of the T. cruzi. 

The aim of the present study was to evaluate the cytotoxic potential of AgNPs on 

trypomastigotes of two T. cruzi biotypes in vitro. To our knowledge, this is the first attempt 

to define how the dose and structural characteristics of AgNPs affect T. cruzi cultures in 

vitro, in an effort to find a safe alternative for the treatment of Chagas disease. 

MATERIALS AND METHODS 

Synthesis of silver nanoparticles 

Inorganic silver (AgNO3, ≥ 99.0%), and sodium borohydride (NaBH4, ≥ 99.99%) were 

purchased from Sigma-Aldrich, USA. All reactions were carried out using deionized water 

(18MΩ; Millipore). The chosen method induces the dispersion of nanoparticles through a 

stable colloidal solution, generating a concentration gradient. Sodium borohydride was 

used as a reducing agent under a cold bath with magnetic stirring (Mulfinger et al., 2007). 

The AgNP solution (Figure 1) was produced using 0.1 mM AgNO3/50 mL (H2O).  

AgNPs prepared in aqueous solution facilitated the study of the interaction between the 

nanoparticles and the parasite, without the intervention of any surfactant or dispersion 

medium other than deionized water. This was achieved after several pilot syntheses with 

two reducing agents (citrate and borohydride). The borohydride produced a more stable 

and concentrated synthesis (0.1 mM AgNPs) that served to achieve the doses of 1-12 µg 

used by Allahverdiyev et al., 2011 against Leishmania tropica. Sterility of AgNPs was 

tested by incubating the nanoparticles in sterile Luria Bertani broth (200 µl/L) at 37ºC for 

two weeks. 

Structural characterization of AgNPs 

The nanoparticles were characterized by UV-Vis spectroscopy, transmission electron 

microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) using 

a 1% dilution of AgNPs suspended in deionized water (v/v). A Genesys 10S VIS (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) was used to perform UV-Vis 

spectroscopy and verify the characteristic surface plasmon resonance wavelength (400-
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450 nm) of AgNPs (Mulfinger et al., 2007). Aliquots (40 μL) of AgNPs dispersed in 

methanol (1:5) were placed on 400 carbon-coated copper grids, dried in a desiccator at 

25 °C for 24 h, and then observed in a JEM-ARM200F-TEM at 120 kV. To determine the 

crystallographic direction of AgNPs facets by fast Fourier transform (FFT), interatomic 

distances were observed in a JEM-ARM200F-TEM at 200 kV (HRTEM) and analyzed with 

Garantia Microscopy Suite Digital Micrograph Software.  

Parasite culture 

Trypomastigotes from the T. cruzi strains Sylvio X10/4 (TcI) and Esmeraldo (TcII) were 

cultured in monolayers of Vero cells, which were kept in DMEM medium supplemented 

with 2% fetal bovine serum [FBS] and 1% penicillin‒streptomycin (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) under controlled conditions (37°C, 5% CO2, 

and saturated humidity) (Aparicio-Burgos et al., 2015). As trypomastigotes started 

bursting out of cells, free parasites were collected and prepared for the AgNP toxicity 

assay.  

Trypomastigotes were placed in 15 mL conical tubes and centrifuged at 704 × g for 7 min. 

Supernatants were discarded and pellets were re-suspended in 1 mL of fresh DMEM 

medium. The number of parasites was estimated with a hemocytometer and adjusted to 

1×106 per well in a 96-well tissue culture dish for the toxicity assay. 

AgNPs toxicity assay for T. cruzi in vitro 

Trypomastigotes (1×106 per well) were placed in 96 well plates (Sarstedt, USA) in DMEM 

supplemented medium and cultured at 37°C, 5% CO2, and saturated humidity, with 

different AgNP doses (1, 5, 10 or 12 μg/100 μL). The assay was performed by triplicate 

with untreated (- Ctrl) or NFMX (400 μg/100 μL, Lampit®, Bayer) treated trypomastigotes 

as negative and positive controls. NFMX was prepared as described by Rolón et al., 2006. 

Briefly, one tablet of the commercial presentation of NFMX (120 mg) was ground in a 

sterile mortar and pestle and resuspended in 1 mL of dimethyl sulfoxide (DMSO). The 

final concentration of DMSO in the culture media never exceeded 0.3% (v/v). 

Plates were incubated for 24 hours under the same controlled conditions. After drug 

treatment, parasite and cell viability were estimated by MTS (3-[4,5,dimethylthiazol-2-yl]-

5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, internal salt) of CellTiter 

96 kit® Aqueous One Solution (Promega, USA), following the manufacturer's instructions, 

by colorimetry at 490 nm wavelength. For this assay, optical density (OD) values 

correlated positively with cell viability. All experiments were performed in triplicate. The 

half-maximal inhibitory concentration (IC50) for each T. cruzi biotype was calculated from 

the dose-response curve (Attarde et al., 2020; Barile & Hopkinson, 1993). 
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In vitro cytotoxic assays in a human keratinocyte cell line (HaCaT) 

HaCaT cells (an immortal cell line of non-cancerous human keratinocytes) (2×104/well) 

were cultured in a 96-well plate (Sarstedt, USA) in supplemented DMEM (2% FBS, 

penicillin 10,000 units/mL and streptomycin 10,000 µg/mL) and AgNPs at 1, 3, 5, 10 or 12 

µg/µL. For each experiment, cells from at least three wells were left untreated (control). 

The plate was incubated for 48 h under controlled conditions (37 °C, 5 % CO2 and 

saturated humidity). After treatment, cell viability was estimated by MTS (3-

[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethylthioxy-phenyl]-2-[4-sulfophenyl]-2H-

tetrazolium, internal salt) of CellTiter 96 kit® Aqueous One Solution (Promega, USA), 

following the manufacturer's instructions. The metabolic activity of MTS-treated cells was 

estimated by colorimetry at a wavelength of 490 nm. 

Statistical analyses 

ANOVA was used to analyze results from the in vitro viability assay. Mean differences for 

all assays were assessed using a Tukey test. Differences were considered significant at 

P < 0.05. Statistical analyses were conducted with the GraphPad Prism 5.0 software 

package (GraphPad Software Inc., USA). 

 

RESULTS 

Characterization of AgNPs 

The UV-Vis spectrum of the aqueous silver colloid (Figure 1) showed a strong peak at 396 

nm, a typical surface plasmon resonance (SPR) band of AgNPs. The narrow and 

symmetric absorption peak indicates a homogeneous size distribution of AgNPs. 

Micrographs of AgNP samples show hemispherical nanoparticles accompanied by some 

elongated structures of size 52 nm (Figure 2a and 2b). High-resolution transmission 

electron microscopy (HRTEM) showed that ∼80% of the particles were decahedrons 

(Figure 2c) with {111} facets (Figure 2d). 

 

Cell viability for the MTS assay 

The trypomastigote viability percentages for both T. cruzi strains showed a dose-

dependent response; this response was most evident for the Sylvio X10/4 strain, which 

showed a 50% reduction in parasite viability at the 1 µg dose of AgNPs and a 95% 

reduction in viability at the highest experimental dose of 12 µg after 24 hours of treatment. 

However, the Esmeraldo strain showed an 83% reduction in viability at the highest dose 
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(12 µg), showing statistical differences between the Esmeraldo strain and the Sylvio X10/4 

strain. Statistical analysis of the results showed differences between the negative control 

and all other treatments, including the different doses of AgNPs and the positive control 

(NFMX) (Figure 3). 

IC50 estimation 

AgNPs showed no different toxicity between IC50 from the studied strains of T. cruzi. The 

IC50 for trypomastigotes for Sylvio X10/4 and Esmeraldo strains were 4.05 and 6.16 

µg/mL, respectively (Figure 4). 

 

HaCaT cells treated with AgNPs 

The viability of HaCaT cells was assessed 48 h after treatment (Figure 5). The toxicity of 

AgNPs on HaCaT cells was assessed by MTS at different concentrations: 1, 3, 5, 10 or 

12 μg/100 μL, which resulted in an IC50 of 10 μg/mL (P<0.05), indicating that AgNPs were 

approximately 2-fold less toxic to HaCaT cells than trypomastigotes. The results showed 

that AgNPs were not cytotoxic at the effective dose (IC50 values = 4.05 and 6.16 µg/mL) 

against TcI and TcII strains of T. cruzi. 

 

Figure 1. Characterization of AgNPs by UV-Vis Spectroscopy. Absorbance spectra of AgNPs (λmax = 

396 nm). The inserted figure displays the photograph of the silver nanoparticles colloid. 
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DISCUSSION 

Chagas disease is a vector-borne disease caused by T. cruzi, a hemoflagellate parasite 

that often causes debilitating and fatal heart disease. BNZ and NFMX are the only 

available drugs approved for medical treatment (Chaves et al., 2017; Toledo et al., 2004). 

However, these drugs induce harsh side effects that prevent patients from concluding 

treatment. In many cases, T. cruzi is resistant to these drugs, making them unable to 

eliminate the parasite from infected tissue (Colantino et al., 2016; Toledo et al., 2004). 

Therefore, public health programs require the development of more effective and less 

toxic therapeutic drugs for the treatment of Chagas disease.  

Silver nanoparticles (AgNPs) have antimicrobial effects not only against fungi (Soliman et 

al., 2018; Mousavi et al., 2015), Gram-positive (Adibhesami et al., 2017) and Gram-

negative bacteria (Pal et al., 2007), but also against protozoa such as Apicomplexa 

(Toxoplasma gondii) (Adeyemi et al., 2017) and Trypanosomatida (Leishmania tropica 

and Leishmania infantum) (Baiocco et al., 2011). Here we report the in vitro trypanolytic 

effects of AgNPs against two different strains of T. cruzi. 

For this study, we produced hemispherical, decahedral AgNPs with a mean diameter of 

52 nm (Figures 1 and 2), and used them at 5 different doses (1, 3, 5, 10 or 12 μg/mL) to 

test toxicity in HaCaT cells and trypanolytic activity in trypomastigotes produced in co-

culture with Vero cell monolayers. We found that silver nanoparticles significantly reduce 

cell viability in a dose-dependent manner in HaCaT cells. This observation is in agreement 

with other studies (Chen et al., 2019; Perde-Schrepler et al., 2019). Importantly, AgNPs 

are not cytotoxic at doses effective against T. cruzi strains, and the toxicity of AgNPs on 

trypomastigotes was indirectly assessed by an MTS proliferation assay, which showed a 

negative effect of AgNPs on trypomastigote viability. Figure 3 shows that nanoparticles 

significantly reduced cell viability compared to the negative control, and that AgNPs had 

similar trypanolytic power to NFMX at different doses. Although no significant differences 

in T. cruzi viability were observed with different doses of AgNPs, a dose-dependent trend 

in viability was observed. These data suggest that higher doses of AgNPs may have 

additional effects on the viability of T. cruzi trypomastigotes. Interestingly, a relatively low 

dose (12 μg/100 μL) of AgNPs killed up to 96.3% (with an IC50 = 4.05 - 6.16 µg/100 μL) 

of trypomastigotes in vitro, whereas NFMX (400 μg/100 μL) killed only 70% (Figures 3 

and 4). This also suggests that AgNPs could be a more efficient trypanolytic agent in vitro 

than NFMX, as observed in the present study, but also in comparison to BNZ 

nanoparticles (with an IC50 = 36 µg/mL) (Scalise et al., 2016). 
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Figure 2. Micrographs show silver nanoparticles produced when borohydride was used as a 

reducing agent at a concentration of 0.1 mM. (a) Transmission Electron Microscopy (TEM) image of 

silver nanoparticles with an average diameter of 52 nm; (b) Particles are mostly semi-spherical, and some 

elongated structures are also observed; (c) High Resolution Transmission Electron Microscopy (HRTEM) 

showed decahedral particles and (d) Fast Fourier Transform (FFT) displayed {111} and {002} facets. 

T. cruzi has already developed some resistance to BNZ and NFMX, the only clinically 

approved drugs against Chagas disease (Mejia et al., 2012; Molina et al., 2000). Different 

T. cruzi biotypes have differential resistance to BNZ. TcI strains of T. cruzi are more 

resistant to BNZ, whereas TcII strains are more sensitive to this drug (Toledo et al., 2004; 

Mejia et al., 2012). Here, we found no differences in sensitivity to AgNPs between the two 

T. cruzi strains tested (Sylvio X10/4 and Esmeraldo) belonging to different biotypes (TcI 

and TcII, respectively). Although further studies are needed, our data regarding the broad 

spectrum of antiparasitic activity of AgNPs suggest that nanoparticles could be an 

interesting option to solve the problem of parasite resistance to other drugs, either used 

as an alternative drug or in combination with those currently in use. 
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Figure 3. T. cruzi survival after treatment with any of three different doses of AgNPs (1, 5, 10, 12 

µg/100 µl), Nifurtimox (NFMX, 400 µg/100 µl) or without treatment (-Ctrl, used as a negative control 

for the MTS viability assay). Samples were evaluated after 24 hours of treatment. Each bar represents 

the absorbance mean value ± SD. Differences (P < 0.05) among groups, according to Tukey’s test, are 

indicated by characters on top of treatment bars. 

 Further studies should address the effects of AgNPs as alternative drugs against T. cruzi, 

especially to understand whether these nanoparticles can exert a detrimental effect on 

amastigotes, the intracellular developmental stage of the parasite in mammals. 

Leishmania tropica amastigotes have been reported to be more sensitive to AgNPs than 

promastigotes at a dose of 10 μg/0.1 mL (Allahverdiyev et al., 2011). If that hypothesis 

holds for T. cruzi, the use of AgNPs in vivo for therapeutic use against Chagas disease 

would become an interesting topic of study. 
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Figure 4. Inhibition of T. cruzi after 24 hours of AgNPs treatment (1, 5, 10, 12 µg/100 µl). Each bar 

represents the absorbance mean value ± standard deviation (n=6). Within the same time point, statistical 

differences (P < 0.05) among groups are shown with different characters above the bars acording to Tukey 

test. 

 

 

Figure 5. The viability of HaCaT cells was examined by MTS assay. HaCaT cells were stimulated with 

various doses of AgNPs (1, 3, 5, 10, 12 µg/100 µl) for 24 hours. The asterisks (*) indicate statistical 

significant differences compared to control (CN) (P < 0.05). 
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AgNPs possess unique physical and electronic properties, which make them excellent 

candidates for medical applications. The antimicrobial mechanism of AgNPs seems to be 

related to the formation of free radicals that damage the microorganisms’ membrane (Kim 

et al., 2007). These properties depend on size, shape, and nanoparticle coating (Dubey 

et al., 2015). In the present study, we synthesized AgNPs with an average diameter of 52 

nm; most of them were hemispherical (decahedral), had {111} and {110} facets, and had 

acceptable trypanolytic activity. However, we believe that the trypanolytic activity of 

AgNPs could be improved, if the shape and size of the nanoparticles were adjusted to 

triangles with a size of 1-10 nm. This type of nanoparticles shows higher antibacterial 

activity than larger AgNPs with hemispherical shapes due to the higher density on the 

facets {111}. This allows triangular nanoparticles to freely permeate the plasma 

membrane and thus induce more damage to microorganisms. In addition, truncated 

triangular AgNPs require lower doses (1-10 μg/0.1 μL) to exert bactericidal properties than 

larger spherical and nanorodal AgNPs (12.5 and 50-100 μg/0.1 μL, respectively) (Ge et 

al., 2014; Dubey  et al., 2015; Morones et al., 2005). 

CONCLUSIONS 

A dose of 12 µg/100 µL dose of AgNPs with an average diameter of 52 nm was cytotoxic 

for trypomastigotes from TcI and TcII T. cruzi biotypes in vitro. Future studies test 

triangular shaped AgNPs with {111} facets to improve the antiprotozoal effects of AgNPs 

on different biotypes of T. cruzi. 
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