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ABSTRACT 

Heat stress (HS) compromises reproductive and growth parameters. Pigs subjected to heat stress reduce 

voluntary intake and modify their energy metabolism causing a reduction in daily weight gain and an 

increase in subcutaneous fat accumulation, which negatively affects the carcass quality of fattening pigs. In 

the sow it causes a negative energy balance affecting reproductive performance by increasing the post-

weaning estrus interval, decreasing gestation rate, farrowing rate and litter size and weight at birth and 

weaning. Many of the negative consequences of HS appear to be mediated by hyperpermeability of the 

intestinal barrier, causing physiological changes such as nutrient partitioning to an activated immune system 

and adverse effects on the ovaries through elevated endotoxin and insulin signaling, resulting in failure of 

the sow's reproductive function.   

Keywords: pig, heat stress, reproductive performance, productive performance. 

 

RESUMEN 

El estrés por calor (EC) compromete parámetros reproductivos y de crecimiento. Los cerdos sometidos a 

estrés por calor reducen el consumo voluntario y modifican su metabolismo energético provocando la 

reducción en la ganancia diaria de peso y un incremento en la acumulación de grasa subcutánea, que 

afecta de manera negativa la calidad de la canal de los cerdos de engorda. En la cerda provoca un balance 

energético negativo afectando su desempeño reproductivo al incrementar el intervalo celo posdestete, 

disminuir la tasa de gestación, tasa de partos y tamaño y peso de la camada al nacimiento y al destete. 

Muchas de las consecuencias negativas del EC parecen estar mediadas por la hiperpermeabilidad de la 

barrera intestinal, provocando cambios fisiológicos como el reparto de nutrientes hacia un sistema 

inmunológico activado y efectos adversos en los ovarios a través de la señalización elevada de endotoxinas 

e insulina, que resultan en fallas en la función reproductiva de la cerda.  

Palabras clave: cerdo, estrés por calor, desempeño reproductivo, desempeño productivo. 

 

 

 

mailto:abanicoveterinario@gmail.com
https://abanicoacademico.mx/revistasabanico-version-nueva/index.php/abanico-veterinario
http://dx.doi.org/10.21929/abavet2022.37
https://orcid.org/0000-0002-0520-9968
https://orcid.org/0000-0001-7825-6880
https://orcid.org/0000-0003-1129-3016
https://orcid.org/0000-0002-9424-3235
https://orcid.org/0000-0002-2364-2554
mailto:romo_14@hotmail.com
mailto:gabsilhid@uas.edu.mx
mailto:hectorguem@gmail.com
mailto:e.ana.romo@uas.edu.mx
mailto:romo60@uas.edu.mx


ABANICO VETERINARIO E-ISSN 2448-6132  abanicoveterinario@gmail.com 

https://abanicoacademico.mx/revistasabanico-version-nueva/index.php/abanico-veterinario 

Creative Commons (CC BY-NC 4.0)  

 

2 

 

 

INTRODUCTION 

Stress is the biological response to an event that the individual perceives as a threat to 

their homeostasis, it is commonly related to increased activity of the hypothalamic-

pituitary-adrenal (HPA) axis and activation of the Adreno-Medullary Sympathetic System 

(Joseph & Whirledge, 2017). Activation of the HPA axis results in the release of a variety 

of peptides, primarily corticotropin-releasing hormone (CRH) and vasopressin from the 

hypothalamus; CRH secretion stimulates the release of adrenocorticotropic hormone 

(ACTH) and beta-endorphins. ACTH induces corticosteroid secretion from the adrenal 

cortex, also triggering the release of progesterone, possibly prostaglandin F2α and even 

inhibin α (Herman et al., 2016). Glucocorticoids stimulate lipolysis and gluconeogenesis, 

leading to increased metabolism that promotes the ability to cope with stress; activation 

of the Sympathetic Nervous System (SNS) and adrenal medulla cause the release of 

catecholamines (adrenaline and noradrenaline) into the bloodstream, which causes an 

increase in glucose supply by accelerating the breakdown of hepatic glycogen (Webster 

& Glaser, 2008). 

Prolonged or chronic stress usually results in inhibition of reproduction, whereas the 

effects of transient or acute stress in certain cases are stimulatory (e.g. anestrus). The 

effect of stress on reproduction will depend on the duration of the stressful event, genetic 

predisposition and the type of stress the pig is subjected to (Joseph & Whirledge, 2017). 

Heat stress (HS) is one of the major impediments to efficient animal production. In the 

U.S. livestock industry alone, annual economic losses associated with CE are estimated 

to approach USD 1.5 billion for dairy and USD 1 billion for swine (Key et al., 2014). HS 

will become an increasing complication for animal production if climate change continues, 

as predicted by most models (Ganesan et al., 2017); moreover, almost all economically 

important traits (lean tissue accumulation rates, fecundity, etc.) are subject to intense 

genetic selection that are accompanied by increased basal heat production (Baumgard & 

Rhoads, 2013; Ross et al., 2015). The objective of the present work was to review the 

influence of heat stress on physiology, productive and reproductive behavior of swine. 

 

Impact of heat stress on animal health and production 

 

Heat stress results from the inability to maintain a balance between heat production and 

heat loss and is highly dependent on environmental conditions (Volodina et al., 2017). 

Prolonged exposure to elevated environmental temperatures causes heat stress in 

humans and animals, which negatively affects human health, animal welfare and livestock 

production (Cui et al., 2016), this can lead to clinical manifestations that can range from 

exacerbation of cardiovascular risk factors such as hypertension (Fonseca et al., 2015) or 

disruption of the intestinal barrier (Xu et al., 2015). 
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HS contributes to increased morbidity and mortality in humans and animals, and is an 

agricultural economic challenge because it reduces livestock productivity Volodina et al., 

2017). In addition to the detrimental effects on human health, heat stress results in 

agricultural losses of approximately $2.4 billion annually, due to production losses (Key et 

al., 2014) and costs associated with medical care and maintaining animal welfare (Ross 

et al., 2015). It is estimated that the U.S. swine industry loses more than $900 million 

annually, primarily due to decreased meat production (Baumgard & Rhoads, 2013) and 

reduced fertility (Nteeba et al., 2015). In pigs, HS decreases feed intake, body weight gain, 

meat quality and fertility, which may explain the large economic losses (Cruzen et al., 

2015). 

 

Pigs experience HS when the ambient temperature exceeds their neutral thermal zone 

(16-22 °C and 50-75 % RH; Botto et al., 2014). Compared to other animals, pigs are more 

sensitive to HS due to their high metabolic heat production, rapid fat deposition, and lack 

of sweat glands (Baumgard & Rhoads, 2013). 

 

Physiological and behavioral effects of heat stress in swine  

Behavioral effects of heat stress in swine. Pigs subjected to large ambient temperature 

challenges tend to reduce nutrition and caloric intake (Cui et al., 2016); this, is a highly 

conserved response among species under heat stress (Pearce et al., 2014). Animals have 

been observed to reduce feed intake to lower metabolic heat production (Renaudeau et 

al., 2013). Cui & Gu (2015), demonstrated that chronic mild heat stress (30°C for three 

weeks) reduces feed intake and daily body weight gain in finishing pigs by 16 and 25 %, 

respectively; in parallel, it increases rectal temperature, respiration rate and plasma 

cortisol, decreases plasma free triiodothyronine and growth hormone; these parameters 

are commonly considered indicators of the consequences of heat on animal physiology 

(Morera et al., 2012). Unlike acute stress (40-42 °C, less than 24 h), chronic stress (33-

35 °C, more than 24 h), poses a different challenge for animals (Cui & Gu, 2015). Cui et 

al. (2016) and Ganesan et al. (2017) indicated that exposure to HS for more than 12 h 

causes oxidative stress in pigs. Compared to hyperthermia and even death caused by 

acute stress, chronic stress can be tolerated for a longer period of time (weeks); however, 

physiological changes in response to chronic stress in various species, including finishing 

pigs, suggests that mild chronic stress alters animal performance and physiology (Hao et 

al., 2014). In this regard, it has been observed that when animals are exposed to a warm 

environment, various physiological mechanisms in the thermoregulatory system are 

adjusted (Cui et al., 2016). 
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Hormonal changes in animals under heat stress. To survive in a high temperature 

environment, animals have evolved specific responses to hyperthermia by regulating 

endocrine systems; in this regard, Cui & Gu (2015) observed that chronic heat stress 

reduces triiodothyronine and growth hormone in stressed pigs, having a synergistic effect 

to reduce heat production.  

One response to acute stressors is activation of the hypothalamic-pituitary-adrenal (HPA) 

axis, resulting in elevated levels of corticotropin-releasing hormone (CRH), which 

stimulates the anterior pituitary to release adrenocorticotropic hormone (ACTH) and other 

peptides. Elevated ACTH stimulates the release of glucocorticoids from the adrenal cortex 

into the blood of stressed farm animals. Activation of the HPA axis and the consequent 

increase in circulating cortisol concentrations is one of the most common and nonspecific 

responses of an animal under stress conditions (Becker et al., 2020). Cortisol release 

stimulates the physiological and metabolic responses necessary to optimize the body's 

ability to overcome a stressor by increasing energy availability (Preiser et al., 2014). 

 

Effect of heat stress on gastrointestinal integrity. The gastrointestinal tract plays the 

critical role of selectively absorbing nutrients and water (Pearce et al., 2014), acting as a 

defensive barrier against endogenous and dietary pathogens as well as toxic compounds. 

Changes in gastrointestinal functions and integrity could be detrimental to mammalian 

health, performance and welfare (Cui & Gu, 2015). HS causes a detour of blood flow from 

the splanchnic bed to the periphery in a thermoregulatory effort to increase radiant heat 

loss, reducing blood flow and nutrient delivery to the gastrointestinal tract, leading to local 

hypoxia, free radical production, and altered intestinal architecture (Yu et al., 2013; Pearce 

et al., 2014; Cui & Gu, 2015; Ogden et al., 2020). In addition, reduced intake in pigs 

subjected to HS has detrimental effects on intestinal integrity (Pearce et al., 2013a). 

Acute caloric stress has also been observed to cause hypoxia and inflammation of the 

intestinal epithelium (Qi et al., 2011), negatively affecting the function of tight junction (TJ) 

proteins of the intestinal epithelium, including myosin light chains (MLC), occludin, claudin, 

and MLC kinase (MLCK) (Pearce et al., 2013b), which are responsible for maintaining 

intestinal function and integrity; leading to increased intestinal permeability (Pearce et al., 

2013b; Sanz-Fernández et al., 2014; Gabler et al., 2018). The dysfunctional intestinal 

barrier allows translocation of dietary and microbial antigens triggering local and systemic 

inflammatory responses (Ogden et al., 2020); proinflammatory cytokines (TNFα, 

interleukins: 1α, IL-1β, IL-6) increase; presumably related to an increase in circulating 

lipopolysaccharide (LPS) (Johnson et al., 2016; Alhenaky et al., 2017). An activated 

immune system requires a substantial amount of energy. Nutrients (specifically glucose 

and amino acids) are diverted to support the immune response (Iseri & Klasing, 2013; 

Kvidera et al., 2017), affecting the productive performance of the pig. 
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When intestinal barrier permeability is increased, LPS entry at the systemic level alters 

the hypothalamic-pituitary-ovarian (HPO) axis by reducing gonadotropin-releasing 

hormone (GnRH) secretion. Consequently, LPS reduces 17β-estradiol during the follicular 

phase of the estrous cycle, attenuating the subsequent release of luteinizing hormone 

(LH) and follicle-stimulating hormone (FSH), which can later lead to delayed ovulation 

Bidne et al., 2018. During the luteal phase, LPS alters progesterone production, 

compromising corpus luteum (CL) formation and causing early luteolysis by inducing 

prostaglandin F2α production; also, LPS alters uterine expression of progesterone and 

estradiol receptors, a response likely mediated by reduced levels of circulating 

progesterone and estradiol; any deregulation in the expression of these receptors, due to 

LPS may negatively influence embryo survival and result in miscarriage or premature 

delivery (Agrawal et al., 2013). 

HS also affects the expression of key enzymes involved in intestinal glucose and energy 

metabolism, including phosphoglucomutase 2 (PGM2), Malate dehydrogenase (MDH2), 

NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUFA10), NADH-coenzyme Q 

reductase (NDUFS3), NADH-ubiquinone oxidoreductase (NDUFS), mitochondrial ATP 

synthase alpha subunit (ATP5A1) and mitochondrial ATP synthase beta subunit (ATP5B); 

PGM2 and MDH2 are involved in glycolysis and the citric acid cycle, respectively; both 

are decreased in animals subjected to heat stress (Cui & Gu, 2015), suggesting that heat 

stress slows energy metabolism. 

 

Effect of heat stress on muscle and productive behavior in swine. Studies in various 

species have indicated that muscle growth is affected by HS+-related alterations in muscle 

physiology (Locke & Celotti, 2014). HS effects on skeletal muscle satellite cell 

proliferation, growth and apoptosis could play a crucial role in determining its impact on 

muscle physiology (Gao et al., 2015). In this regard, it is known that cell number depends 

on the balance between cell proliferation and cell death, while cell size depends on cell 

growth (Tumaneng et al., 2012). It has been observed that HS can induce cell division 

arrest, and exposure of cells to acute or chronic stress induces cell death by apoptosis, 

necrosis or autophagy (Zhang et al., 2012). Growing pigs are highly susceptible to heat 

stress, decreasing their productive performance (Pearce et al., 2013a), as well as nitrogen 

intake and retention (Renaudeau et al., 2013). In addition, metabolic responses are 

altered in stressed pigs, decreasing heat production and feeding behavior compared to 

pigs raised under thermo-neutral conditions. 
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Effect of heat stress on immune response. HS is considered one of the main factors 

that impose negative impacts on production and reproduction in farm animals, as they 

alter the animal's immune functions making them susceptible to infectious diseases 

(Inbaraj et al., 2016). 

The adaptive response, via HPA axis, is known to be ACTH-induced glucocorticoid 

elevation, which produces gluconeogenic, antiphlogistic and immunosuppressive effects. 

The immunosuppressive effects of glucocorticoids include suppression of lymphocyte 

proliferation, IL-2 production, and neutrophil function; in addition, they inhibit 

proinflammatory cytokines, namely TNF-α, IL-6, IL-8, which are required to initiate an 

innate immune response by inhibiting the p38 MAPK pathway that helps maintain their 

stability (Abraham et al., 2006; Jankord et al., 2010): also, it inhibits the release of IL-12 

and IFNγ which are the main cytokines involved in Th1-based cell-mediated immunity. 

The expression of IL-12 receptors on NK cells and Th1 cells is negatively regulated by 

glucocorticoids and, therefore, immune function is shifted from Th1 to Th2, so it is 

considered that HS acts to shift adaptive immune function from cell-mediated humoral 

immunity and, therefore, weakens the immune function of the animal (Inbaraj et al., 2016). 

In addition, HS, reduce in the intestine innate immune components, such as mucosal 

barrier, Toll-like receptors (TLR), secretory IgA, intestinal intraepithelial lymphocyte 

production (Deng et al., 2012), expression of cytokines responsible for humoral and cell-

mediated immune response. Reduced intestinal immune function allows bacterial 

translocation to the mesenteric lymph node (Liu et al., 2012). 

 

Effect of heat stress on energy metabolism: its impact on carcass quality and 

reproductive physiology. The animal response to stress involves energy expenditure to 

eliminate or reduce its impact, which increases its energy requirements for maintenance 

to the detriment of energy for production; however, stress does not uniformly affect the 

energy balance. Depending on the stress, phage drive may increase (gestation, lactation, 

cold) or decrease (heat, social, immune, farrowing); likewise, in some cases energy 

expenditure is increased (gestation, lactation, cold, immune stress) or decreased (fasting 

and heat) by stressors (Collier et al., 2017). Pigs stressed by caloric load generally have 

a depressed activity level, their behavioral behavior is to lie down and, therefore, have 

significantly fewer periods of feeding and physical activity (Cross et al., 2020), so they 

decrease feed intake to reduce metabolic heat production and maintain homeothermia, 

resulting in slower growth. Pigs raised under HS conditions have reduced muscle mass 

and increased adipose tissue (Qu et al., 2016), as elevated ambient temperature 

promotes lipid deposition in back and visceral fat. According to Baumgard & Rhoads 

(2013), heat stress decreases protein deposition to reduce metabolic heat production; 

therefore, more energy is available for fat deposition, resulting in increased carcass fat 

content. It has been suggested that the effect of HS on feed intake and growth of pigs is 
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more pronounced in recent years, supporting the hypothesis that genetic selection for 

growth and lean carcass traits increases pig thermal sensitivity, (Renaudeau et al., 2011). 

HS has been observed to increase insulin levels (Sanz-Fernández et al., 2015), hepatic 

glucose production (glycogenolysis and gluconeogenesis), lipid deposition and reduce 

protein deposition (Johnson et al., 2015b); likewise, when intestinal permeability is 

increased, LPS passage reduces protein synthesis and stimulates skeletal muscle 

catabolism during immune challenges (Gordon et al., 2013). 

HS-induced hyperinsulinemia alters ovarian biology, affecting oocyte development 

through activation of the phosphatidylinositol-3-kinase (PI3K) pathway. PI3K plays a key 

role in different ovarian cellular processes, including oocyte recruitment, corpus luteum 

survival, and oocyte maturation; therefore, dysregulation in this pathway can directly 

influence ovarian function and contribute to infertility (Makker et al., 2014). HS not only 

increases circulating insulin, but also enhances the ability of the ovary to respond to insulin 

by increasing insulin receptors and downstream signaling pathways, which regulate 

gamete quality and steroidogenesis, a scenario that contributes to reproductive 

dysfunction (Nteeba et al., 2015; Dickson et al., 2018). 

Regarding lipid metabolism, it is known that fatty acids used to synthesize triglycerides 

(TG) are mainly derived from a novel synthesis in adipose tissues of pigs (Xin et al., 2016), 

however HS depresses malic enzyme (ME) and glucose-6-phosphate dehydrogenase 

(G6PDH) activities in backfat and visceral fat of pigs (Rinaldo & Le Dividich, 1991); even, 

at a similar level of feed intake, acetyl-CoA-carboxylase (ACC) activity is lower in heat-

stressed pigs (Xin et al., 2016); these findings indicate that new fatty acid synthesis is 

inhibited in backfat and visceral fat of pigs in HS. Another source of fatty acids used to 

synthesize triglycerides are plasma triglyceride-rich lipoproteins (e.g. intestinal 

chylomicrons and hepatic very low density lipoprotein); this, by action of lipoprotein lipase 

(O'Hea & Leveille 1969). This enzyme tends to increase its concentration in visceral fat of 

pigs under caloric stress (Sanders et al., 2009), indicating that adipose tissue of 

hyperthermic animals has an increased capacity to absorb and store intestinal and liver-

derived triglycerides (Baumgard & Rhoads, 2013); therefore, chronic exposure of growing 

pigs to high environmental temperature enhances lipid metabolism in liver (hepatic very 

low density lipoprotein production) and adipose tissue (lipoprotein lipase activity), and as 

a consequence plasma triglyceride absorption and storage is facilitated in adipose tissue, 

resulting in increased fat deposition (Sanz-Fernandez et al., 2015). 

 

Effect of heat stress on feed intake and productive behavior of swine. The thermal 

environment affects all animals and, therefore, represents the largest stress factor in 

animal production (Collier et al., 2017). Different animal species have a thermo-neutral 

zone where they are able to manifest their productive potential; it is defined as the ambient 

temperature zone with minimum heat production at constant body temperature; above this 

zone, the core temperature rises and pigs become heat stressed (Gourdine et al., 2021). 
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Compared to other farm animal species, pigs are more sensitive to high environmental 

temperatures because they cannot sweat and do not pant very well, responding to heat 

stress through a complex of physiological, behavioral and anatomical mechanisms, aimed 

at facilitating heat loss or minimizing heat gain from the environment, so the swine industry 

is particularly affected, as pigs are not physiologically adapted to dissipate all heat through 

sweating or respiration (Renaudeau et al., 2011), which has a detrimental effect on the 

productive performance of pigs. 

 

When environmental conditions exceed the pig's thermoneutral zone, nutrients are 

diverted from product synthesis (meat, fetus, milk), towards maintenance of body 

temperature, which compromises productive efficiency (Ross et al., 2015). 

The main consequence of HS is decreased feed intake (Cervantes et al., 2018), negatively 

affecting the performance of the finishing pig, producing less muscle and increased fat 

deposition (Zhao et al., 2018), which decreases carcass value. In general, as the pig gets 

older, its optimal environmental temperature decreases; therefore, the effects of heat 

stress are of more concern in finishing pigs (> 50 kg). Finishing pigs begin to feel the 

negative effects of HS at ambient temperatures of 20 °C (> 50 kg), manifesting in lower 

feed intake, resulting in reduced daily weight gain (Myer & Bucklin, 2012). At temperatures 

above 30 °C feed conversion is also negatively affected in growing pigs (25 to 50 kg); at 

this stage the negative effects of heat stress are not as noticeable as in heavier pigs, but 

temperatures above 30 °C can reduce performance (+0.2 kg/kg between 30 to 36 °C) 

(Renaudeau et al., 2011). Myer & Bucklin (2012) observed that pigs raised during the 

summer grew 11 % slower and required 5 % more feed per unit of weight gain compared 

to pigs raised during the fall, when ambient temperatures were mostly within the pig's 

thermo-neutral zone (comfort zone). 

 

Effects of heat stress on sow reproductive performance. Sows respond to HS with an 

increase in rectal temperature, respiratory rate and skin temperature, and tend to reduce 

their activity, which can change their body composition, increasing the adipose-to-muscle 

ratio (Lucy & Safranski, 2017). Sows under HS reduce their feed intake (Renaudeau et 

al., 2012), which results in a negative energy balance, loss of body condition and 

reproductive problems associated with inadequate ovarian function, manifested in 

anestrus, weak or irregular expression of estrus, irregular estrous cycles, delayed puberty, 

prolonged wean-to-estrus interval, higher abortion rates, low farrowing rate and small litter 

size at birth and weaning; as well as, a decrease in milk production, which can negatively 

affect piglet growth during lactation and weaning weight. In early gestation, heat stress 

increases embryonic mortality, increases the number of stillborn piglets and reduces piglet 

birth weight (Wegner et al., 2016; Lucy & Safranski, 2017). 
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In addition, maternal exposure to HS has negative consequences on offspring (Johnson 

et al., 2013; Boddicker et al., 2014; Johnson et al., 2015a). Porcine fetuses exposed to 

HS during the first half of gestation increase backfat and circulating insulin early in the 

finishing phase (Boddicker et al., 2014). Maternal exposure to HS appears to have long-

lasting consequences on the future performance of the offspring, which can negatively 

influence animal productivity and profitability (Mayorga et al., 2020); during gestation, HS, 

can cause developmental damage to the offspring, which will manifest in the following 

productive stages of the pig (Lucy & Safranski, 2017). 

In lactating sows, temperatures above 25 °C have been observed to reduce feed intake 

(6.1 vs. 4.2 kg/d with temperatures of 25 and 30 °C, respectively), causing a decrease in 

milk production and an increase in sow weight loss (-7.9 vs. -24.2 kg/lactation with 

temperatures of 25 and 30 °C, respectively); therefore, pigs are weaned smaller (6. 9 vs. 

6.4 kg with temperatures of 25 and 30 °C, respectively), and the sow's ability to return to 

production after weaning is compromised, due to her large weight loss (Myer & Bucklin, 

2012); it has also been observed that high environmental temperature delays or prevents 

the onset of estrus, reduce conception rate, and increase early embryonic death (Plush 

et al., 2019; Bunz et al., 2019; Liu et al., 2019, 2022); in addition, HS in the last weeks of 

gestation, prior to parturition, may result in a higher number of dead piglets at birth. 

Unfortunately, genetic selection for increased litter size and leaner phenotypes decreases 

pigs' tolerance to heat, as fetal development and protein synthesis increase basal heat 

production (Ross et al., 2015). Although HS is currently a major impediment to pig 

production performance, it will likely become a production constraint in the future if genetic 

selection for increased lean tissue synthesis and reproductive capacity (piglets born and 

weaned) continues to be emphasized, as these traits are accompanied by increased basal 

heat production (Merks et al., 2012). When analyzing a sow's production cycle, which 

includes animal growth, HS has a substantial economic impact on the swine industry 

worldwide (Liu et al., 2022), as it compromises farrowing rates and is believed to delay 

the onset of puberty, decrease fertility in multiparous sows and gilts, which typically 

manifests as seasonal infertility (Lucy & Safransk, 2017;  De Rensis et al., 2017). While 

the mechanisms through which stress alters endocrine signaling are not entirely clear, 

evidence suggests that the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-

adrenal axes are particularly sensitive to stress, including heat stress. When stress is 

perceived, the hypothalamic-pituitary-adrenal axis is activated, resulting in increased 

glucocorticoid levels. Glucocorticoid production is critical in the "fight or flight" response 

and in the reallocation of biological resources to resume homeostasis. Ultimately, this 

response suppresses reproductive function (Joseph & Whirledge, 2017) by exerting a 

negative feedback stimulus on the hypothalamus, preventing the production of GnRH, 

which affects the release and action of gonadotropins. 
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CONCLUSIONS 

Heat stress in sows causes prolonged intervals between weaning and service, embryonic 

death and resorption (first third of gestation), a greater number of regular and irregular 

returns to estrus, spontaneous abortions (last third of gestation), reduced gestation and 

farrowing rates, reduced litter size and weight, and reduced milk production. In fattening 

pigs, heat stress manifests itself mainly in a reduction in daily weight gain and carcass 

quality. 
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